Đường thẳng ∆ đi qua giao điểm của hai đường thẳng d1: 2x + y – 3 = 0 và d2: x – 2y + 1 = 0, đồng thời tạo với d3: y – 1 = 0 một góc
Câu hỏi:
Đường thẳng ∆ đi qua giao điểm của hai đường thẳng d1: 2x + y – 3 = 0 và d2: x – 2y + 1 = 0, đồng thời tạo với d3: y – 1 = 0 một góc Phương trình đường thẳng ∆ là:
A. 2x + y = 0; x – y – 1 = 0;
B. x + 2y = 0; x – 4y = 0;
C. x – y = 0; x + y – 2 = 0;
D. 2x + 1 = 0; x – 3y = 0.
Trả lời:
Gọi A(x; y) là giao điểm của hai đường thẳng d1 và d2.
Khi đó tọa độ A là nghiệm của hệ phương trình:
Suy ra A(1; 1).
Gọi là vectơ pháp tuyến của đường thẳng ∆.
d3 có vectơ pháp tuyến .
Theo đề, ta có (∆, d3) = .
Suy ra
⇔ 2b2 = a2 + b2
⇔ a2 = b2
⇔ a = b hoặc a = –b.
• Với a = b: Chọn a = b = 1, ta được .
Đường thẳng ∆ đi qua A(1; 1), có vectơ pháp tuyến nên có phương trình tổng quát là:
1(x – 1) + 1(y – 1) = 0 ⇔ x + y – 2 = 0.
• Với a = –b: Chọn b = –1, ta suy ra a = 1.
Khi đó ta có .
Đường thẳng ∆ đi qua A(1; 1), có vectơ pháp tuyến nên có phương trình tổng quát là:
1(x – 1) – 1(y – 1) = 0 ⇔ x – y = 0.
Vậy có hai đường thẳng ∆ thỏa mãn yêu cầu bài toán có phương trình là:
x + y – 2 = 0; x – y = 0.
Do đó ta chọn phương án C.