X

Toán lớp 10 Chân trời sáng tạo

Giải Toán 10 trang 59 Tập 1 Chân trời sáng tạo


Haylamdo biên soạn và sưu tầm giải Toán 10 trang 59 Tập 1 trong Bài tập cuối chương 3 Toán lớp 10 Tập 1 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10 trang 59.

Giải Toán 10 trang 59 Tập 1 Chân trời sáng tạo

Bài 1 trang 59 Toán lớp 10 Tập 1: Tìm tập xác định của các hàm số sau:

a) y = 4x2 – 1;

b) y=1x2+1;

c) y=2+1x.

Lời giải:

a) Với mọi số thực x hàm số đã cho đều xác định.

Vậy tập xác định của hàm số: D = ℝ.

b) Điều kiện xác định của hàm số  y=1x2+1là x2 + 1 ≠ 0

Vì x2 ≥ 0 với mọi giá trị của x nên x2 + 1 ≥ 0 + 1 = 1 > 0 nên x2 + 1 ≠ 0 với mọi x.

Vậy tập xác định của hàm số: D = ℝ .

c) Điều kiện xác định của hàm số  y=2+1x là x ≠ 0.

Vậy tập xác định của hàm số là: D = ℝ \{0}.

Bài 2 trang 59 Toán lớp 10 Tập 1: Tìm điều kiện của m để mỗi hàm số sau đây là một hàm số bậc hai:

a) y = (1 – 3m)x2 + 3;

b) y = (4m – 1)(x – 7)2;

c) y = 2(x2 + 1) + 11 – m.

Lời giải:

a) Để hàm số đã cho là hàm số bậc hai thì 1 – 3m ≠ 0 ⇔ m ≠ 13.

Vậy với m ≠  13 thì hàm số đã cho là hàm số bậc hai.

b) y = (4m – 1)(x – 7)2

⇔ y = (4m – 1)(x2 – 14x + 49)

⇔ y = (4m – 1)x2 – 14(4m – 1)x + 49(4m – 1)

Để hàm số đã cho là hàm số bậc hai thì 4m – 1 ≠ 0 ⇔ m ≠ 14.

Vậy với m ≠ 14 thì hàm số đã cho là hàm bậc hai.

c)  Ta có: y = 2(x2 + 1) + 11 – m

⇔ y = 2x2 + 2 + 11 – m

⇔ y = 2x2 + 13 – m

Hàm số đã cho là hàm số bậc hai với mọi giá trị của m.

Vậy với mọi giá trị của m thì hàm số đã cho là hàm số bậc hai.

Bài 3 trang 59 Toán lớp 10 Tập 1: Vẽ đồ thị các hàm số sau:

a) y = x2 – 4x + 3;

b) y = - x2 – 4x + 5;

c) y = x2 – 4x + 5;

d) y = -x2 – 2x – 1.

Lời giải:

a) y = x2 – 4x + 3

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = x2 – 4x + 3 là một parabol (P1):

- Có đỉnh S với hoành độ xS = 2, tung độ yS = -1;

- Có trục đối xứng là đường thẳng x = 2 (đường thẳng này đi qua đỉnh S và song song với trục Oy);

- Bề lõm quay lên trên vì a > 0;

- Cắt trục tung tại điểm có tung độ bằng 3, tức là đồ thị đi qua điểm có tọa độ (0; 3).

Ngoài ra, phương trình x2 – 4x + 3 = 0 có hai nghiệm phân biệt x1 = 1 và x2 = 3 nên đồ thị hàm số cắt trục hoành tại hai điểm có tọa độ (1; 0) và (3; 0).

Ta có đồ thị sau:

Vẽ đồ thị các hàm số sau: y = x^2 – 4x + 3

b) y = - x2 – 4x + 5:

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = – x2 – 4x + 5 là một parabol:

- Có đỉnh S với hoành độ xS = -2, tung độ yS = 9;

- Có trục đối xứng là đường thẳng x = -2 (đường thẳng này đi qua đỉnh S và song song với trục Oy);

- Bề lõm quay xuống dưới vì a < 0;

- Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5).

Ngoài ra, phương trình – x2 – 4x + 5 = 0 có hai nghiệm phân biệt x1 = 1 và x2 = -5 nên đồ thị hàm số cắt trục hoành tại hai điểm có tọa độ (1; 0) và (-5; 0).

Ta có đồ thị sau:

Vẽ đồ thị các hàm số sau: y = x^2 – 4x + 3

c) y = x2 – 4x + 5:

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = x2 – 4x + 5 là một parabol:

- Có đỉnh S với hoành độ xS = 2, tung độ yS = 1;

- Có trục đối xứng là đường thẳng x = 2 (đường thẳng này đi qua đỉnh S và song song với trục Oy);

- Bề lõm quay lên trên vì a > 0;

- Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5).

Ngoài ra, phương trình x2 – 4x + 5 = 0 vô nghiệm nên đồ thị hàm số không cắt trục hoành.

Ta có đồ thị sau:

Vẽ đồ thị các hàm số sau: y = x^2 – 4x + 3

d) y = -x2 – 2x – 1.

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = -x2 – 2x – 1 là một parabol:

- Có đỉnh S với hoành độ xS = -1, tung độ yS = 0;

- Có trục đối xứng là đường thẳng x = -1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);

- Bề lõm quay xuống dưới vì a < 0;

- Cắt trục tung tại điểm có tung độ bằng -1, tức là đồ thị đi qua điểm có tọa độ (0; -1).

Ngoài ra, phương trình -x2 – 2x – 1 = 0 có nghiệm x = - 1 nên đồ thị hàm số cắt trục hoành tại điểm có tọa độ (-1; 0).

Vẽ đồ thị các hàm số sau: y = x^2 – 4x + 3

Bài 4 trang 59 Toán lớp 10 Tập 1: Một vận động viên chạy xe đạp trong 1 giờ 30 phút đầu với vận tốc trung bình là 42km/h. Sau đó người này nghỉ tại chỗ 15 phút và tiếp tục đạp xe 2 giờ liền với vận tốc 30km/h.

a) Hãy biểu thị quãng đường s (tính bằng ki lô mét) mà người này đi được sau t phút bằng một hàm số.

b) Vẽ đồ thị biểu diễn hàm số s theo t.

Lời giải:

Đổi 1 giờ 30 phút = 90 phút; 42km/h = 0,7km/phút; 30km/h = 0,5km/phút, 2 giờ = 120 phút.

Với t ≤ 105:

Quãng đường người này đi được là: 0,7.t (km).

Với 105 < t ≤ 225:

Quãng đường người này đi được là: 0,7.90 + (t – 15 – 90).0,5 = 0,5t + 10,5 (km).

Vậy hàm số biểu diễn cho quãng đường S mà người này đi được sau t phút là:

S = ft=0,7.t  khi  t950,5.t+10,5  khi  95<t225

b) Với t ≤ 95 thì f(t) = 0,7.t

Đồ thị hàm số là đường thẳng đi qua hai điểm O(0; 0) và A(95; 66,5).

Với 95 < t ≤ 225 thì f(t) = 0,5.t + 10,5

Đồ thị hàm số là đường thẳng đi qua hai điểm B(95; 58) và C(225; 123).

Một vận động viên chạy xe đạp trong 1 giờ 30 phút đầu với vận tốc trung bình là 42km/h

Bài 5 trang 59 Toán lớp 10 Tập 1: Biết rằng hàm số y = 2x2 + mx + n giảm trên khoảng (-∞; 1), tăng trên khoảng (1; + ∞) và có tập giá trị là [9; +∞). Xác định giá trị của m và n.

Lời giải:

Ta có giảm trên khoảng (-∞; 1), tăng trên khoảng (1; + ∞) và có tập giá trị là [9; +∞) nên điểm đỉnh S có tọa độ (1; 9).

Do đó xSb2a=1m2.2=1m=4

Và yS = 2.12 + m.1 + n = 9 ⇔ 2 + (-4) + n = 9 ⇔ n = 11.

Vậy với m= -4 và n = 11 thì hàm số đã cho thỏa mãn điều kiện bài toán.

Bài 6 trang 59 Toán lớp 10 Tập 1: Nhảy bungee là một trò chơi mạo hiểm. Trong trò chơi này, người chơi đứng ở vị trí trên cao, thắt dây an toàn vả nhảy xuống. Sợi dây này có tính đàn hồi và được tính toán chiều dài để nó kéo người chơi lại khi gần chạm đất (hoặc mặt nước).

Chiếc cầu trong Hình 1 có bộ phận chống đỡ dạng parabol. Một người thực hiện một cú nhảy bungee từ giữa cầu xuống với dây an toàn. Người này cần trang bị sợi dây an toàn dài bao nhiêu mét? Biết rằng chiều dài của sợi dây đó bằng một phần ba khoảng cách từ vị trí bắt đầu nhảy đến mặt nước.

Nhảy bungee là một trò chơi mạo hiểm. Trong trò chơi này, người chơi đứng ở vị trí trên cao

Lời giải:

Ta có sơ đồ sau:

Điểm A là vị

Nhảy bungee là một trò chơi mạo hiểm. Trong trò chơi này, người chơi đứng ở vị trí trên cao

trí nhảy của người đó, E và F là chân bộ phận chống đỡ cầu.

Vì bộ phận chống đỡ cầu có dạng parabol (P) nên có phương trình: y = ax2 + bx + c.

Đoạn EF = 48 + 117 = 165 m, OE = EF : 2 = 165:2 = 82,5m

⇒ OH = OE – EH = 34,5 m

Khi đó tọa độ D(34,5; 46,2), E(-82,5; 0) và F(82,5; 0).

Vì các điểm D, E, F thuộc đồ thị hàm số (P) nên ta có hệ phương trình:

a.82,52+b.82,5+c=0a.82,52+b.82,5+c=0a.34,52+b.34,5+c=46,2a=779360b=0c=46565832

Suy ra parabol cần tìm là: y=779360x2+46565832

Điểm B là điểm đỉnh nên có xB = 0 và yB779360.02+46565832=46565832

Do đó OB = 46565832 (m)

Khoảng cách từ vị trí nhảy đến mặt nước là:

AB + OB + OC = 1 + 46565832 + 43 ≈ 99,97 m.

Độ dài sợi dây là: 99,97: 3 = 33,32 m.

Vậy độ dài sợi dây là 33,32 m.

Bài 7 trang 59 Toán lớp 10 Tập 1: Giả sử một máy bay cứu trợ đang bay theo phương ngang và bắt đầu thả hàng từ độ cao 80m, lúc đó máy bay đang bay với vận tốc 50m/s. Để thùng hàng hỗ trợ rơi trúng vị trí được chọn, máy bay cần thả hàng ở vị trí nào? Biết rằng nếu chọn gốc tọa độ là hình chiếu trên mặt đất của vị trí hàng cứu trợ bắt đầu được thả, thì tọa độ của hàng cứu trợ được cho bởi hệ sau:

x=v0ty=h12gt2

Trong đó, v0 là vận tốc ban đầu và h là độ cao tính từ khi hàng rời máy bay.

Lưu ý: Chuyển động này được xem là chuyển động ném ngang.

Giả sử một máy bay cứu trợ đang bay theo phương ngang và bắt đầu thả hàng từ độ cao 80m

Lời giải:

Gọi A là vị trí bắt đầu thả hàng, C là vị trí được chọn để nhận thùng hàng hỗ trợ.

Ta có O là hình chiếu của A trên mặt đất nên ta có hình vẽ sau:

Giả sử một máy bay cứu trợ đang bay theo phương ngang và bắt đầu thả hàng từ độ cao 80m

Tọa độ điểm C là nghiệm của hệ phương trình:

xC=v0tyC=h12gt2 với h = 80m, g = 9,8m/s2, v0 = 50m/s.

Do C ở mặt đất nên tung độ của C là yC = 0. Khi đó ta có hệ phương trình:

xC=50.t0=8012.9,8.t2xC=50.t0=8012.9,8.t2xC202,03t=2027xC202,03yC=0

Vậy vị trí được chọn để nhận thùng hàng hỗ trợ có tọa độ là (202,03; 0).

Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác: