Giải Toán 10 trang 7 Tập 2 Chân trời sáng tạo
Haylamdo biên soạn và sưu tầm giải Toán 10 trang 7 Tập 2 trong Bài 1: Dấu của tam thức bậc hai Toán lớp 10 Tập 2 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10 trang 7.
Giải Toán 10 trang 7 Tập 2 Chân trời sáng tạo
Thực hành 1 trang 7 Toán lớp 10 Tập 2: Biểu thức nào sau đây là tam thức bậc hai? Nếu là tam thức bậc hai, hãy xét dấu của nó tại x = 1.
a) f(x) = 2x2 + x – 1;
b) g(x) = – x4 + 2x2 + 1;
c) h(x) = – x2 + x – 3.
Lời giải:
a) Biểu thức f (x) = 2x2 + x – 1 có dạng tam thức bậc hai với a = 2, b = 1 và c = -1.
Với x = 1 thì f (1) = 2.12 + 1 – 1 = 2 > 0.
b) Biểu thức g(x) = – x4 + 2x2 + 1 không có dạng tam thức bậc hai vì bậc của đa thức là bậc 4.
c) Biểu thức h(x) = – x2 + x – 3 có dạng tam thức bậc hai với a = -1, b = , c = -3.
Với x = 1 thì h(1) = – 12 + .1 – 3 = – 4 < 0.
Thực hành 2 trang 7 Toán lớp 10 Tập 2: Tìm biệt thức và nghiệm của tam thức bậc hai sau:
a) f(x) = 2x2 – 5x + 2;
b) g(x) = – x2 + 6x – 9;
c) h(x) = 4x2 – 4x + 9.
Lời giải:
a) Tam thức bậc hai f(x) = 2x2 – 5x + 2 có ∆ = (-5)2 – 4.2.2 = 25 – 16 = 9 > 0. Do đó f(x) có hai nghiệm phân biệt là:
x1= = 2 và x2= .
Vậy biệt thức ∆ = 9 và tam thức có hai nghiệm phân biệt x1 = 2 và x2= .
b) Tam thức bậc hai g(x) = – x2 + 6x – 9 có ∆ = 62 – 4.(-1).(-9) = 36 – 36 = 0. Do đó g(x) có nghiệm kép là:
x1= x2 = .
Vậy biệt thức ∆ = 0 và tam thức có hai nghiệm kép x = 3.
c) Tam thức bậc hai h(x) = 4x2 – 4x + 9 có ∆ = 42 – 4.4.9 = 16 – 144 = - 128 < 0. Do đó f(x) vô nghiệm.
Lời giải bài tập Toán lớp 10 Bài 1: Dấu của tam thức bậc hai Chân trời sáng tạo hay khác: