Cho elip (E): x^2/a^2+ y^2/b^2 = 1, ( a > b > 0). a) Tìm các giao điểm A1, A2 của (E) với trục hoành và các giao điểm B1, B2 của (E) với trục tung. Tính A1A2,  B1B2. b) Xét một điểm bất kì


Câu hỏi:

Cho elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\,\,\,\left( {a > b > 0} \right)\).

a) Tìm các giao điểm A1, A2 của (E) với trục hoành và các giao điểm B1, B2 của (E) với trục tung. Tính A1A2,  B1B2.

b) Xét một điểm bất kì M(x0; y0) thuộc (E).

Chứng minh rằng, b2 x02 + y02 a2 và b OM a.

Chú ý: A1A2, B1B2 tương ứng được gọi là trục lớn, trục nhỏ của elip (E) và tương ứng có độ dài là 2a, 2b.

Trả lời:

Hướng dẫn giải

a)

+) Có A1 thuộc trục hoành Ox nên y = 0, hơn nữa A1 lại thuộc (E) nên \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{0^2}}}{{{b^2}}} = 1\). 

 x2 = a2

x = ± a. Do đó, x=±ay=0.

Chọn A1 nằm bên trái trục Oy nên có hoành độ âm. Vậy tọa độ A1(a; 0).

Chọn A2 nằm bên phải trục Oy nên có hoành độ dương. Vậy tọa độ A2(a; 0). 

Suy ra độ dài A1A2 = \(\sqrt {{{\left( {a - \left( { - a} \right)} \right)}^2} + {{\left( {0 - 0} \right)}^2}} = \sqrt {{{\left( {2a} \right)}^2}} = 2a\) (do a > 0).

+) B1 thuộc trục tung Oy nên x = 0, hơn nữa B1 lại thuộc (E) nên \(\frac{{{0^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\). 

 y2 = b2

y = ± b. Do đó, x=0y=±b.

Chọn B1 nằm phía dưới trục Ox nên có tung độ âm. Vậy tọa độ B1(0; b).

Chọn B2 nằm phía trên trục Ox nên có tung độ dương. Vậy tọa độ B2(0; b). 

Suy ra độ dài B1B= \(\sqrt {{{\left( {0 - 0} \right)}^2} + {{\left( {b - \left( { - b} \right)} \right)}^2}} = \sqrt {{{\left( {2b} \right)}^2}} \)= 2b (do b > 0).

Vậy A1A2 = 2a, B1B2 = 2b.

b) Vì M(x0; y0) thuộc (E) nên ta có tọa độ điểm M thỏa mãn phương trình (E), do đó:

\(\frac{{x_0^2}}{{{a^2}}} + \frac{{y_0^2}}{{{b^2}}} = 1\).

+) Giả sử b2 x02 + y02, chia cả hai vế cho b2 > 0 ta được:

\(\frac{{{b^2}}}{{{b^2}}} \le \frac{{x_0^2}}{{{b^2}}} + \frac{{y_0^2}}{{{b^2}}}\)

\( \Leftrightarrow 1 \le \frac{{x_0^2}}{{{b^2}}} + \frac{{y_0^2}}{{{b^2}}}\)

\( \Leftrightarrow \frac{{x_0^2}}{{{a^2}}} + \frac{{y_0^2}}{{{b^2}}} \le \frac{{x_0^2}}{{{b^2}}} + \frac{{y_0^2}}{{{b^2}}}\)

\( \Leftrightarrow \frac{{x_0^2}}{{{a^2}}} \le \frac{{x_0^2}}{{{b^2}}}\)

Do a > b > 0 nên a2 > b2 > 0, và x02 ≥ 0 với mọi x0 nên \(\frac{{x_0^2}}{{{a^2}}} \le \frac{{x_0^2}}{{{b^2}}}\) luôn đúng.

Vậy b2 x02 + y02.

+) Chứng minh tương tự ta được: x02 + y02 ≤ a2.

Vậy b2 x02 + y02 ≤ a2     (*).

+) Ta lại có: OM = \(\sqrt {x_0^2 + y_0^2} \)

Từ (*) ta suy ra: \(b \le \sqrt {x_0^2 + y_0^2} \le a\)

Do đó: b ≤ OM ≤ a.

Xem thêm lời giải bài tập Toán 10 Kết nối tri thức hay, chi tiết:

Câu 1:

A – Trắc nghiệm

Phương trình nào sau đây là phương trình tham số của đường thẳng?

Xem lời giải »


Câu 2:

Phương trình nào sau đây là phương trình tổng quát của đường thẳng?

Xem lời giải »


Câu 3:

Phương trình nào sau đây là phương trình của đường tròn?

Xem lời giải »


Câu 4:

Phương trình nào sau đây là phương trình chính tắc của đường elip?

Xem lời giải »


Câu 5:

Cho hypebol có phương trình: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\).

a) Tìm các giao điểm A1, A2 của hypebol với trục hoành (hoành độ của Anhỏ hơn của A2).

b) Chứng minh rằng, nếu điểm M(x; y) thuộc nhánh nằm bên trái trục tung của hypebol thì x ≤ − a, nếu điểm M(x; y) thuộc nhánh nằm bên phải trục tung của hypebol thì x ≥ a.

c) Tìm các điểm M1, M2 tương ứng thuộc cách nhánh bên trái, bên phải trục tung của hypebol để  M1M2 nhỏ nhất.

Xem lời giải »


Câu 6:

Một cột trụ hình hypebol (H.7.36), có chiều cao 6 m, chỗ nhỏ nhất ở chính giữa và rộng 0,8 m, đỉnh cột và đáy cột đều rộng 1 m. Tính độ rộng của cột ở độ cao 5 m (tính theo đơn vị mét và làm tròn tới hai chữ số sau dấu phẩy).
Media VietJack

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2