Cho hai điểm A(8; 0) và B(0; 6). Phương trình đường tròn ngoại tiếp tam giác OAB là


Câu hỏi:

Cho hai điểm A(8; 0) và B(0; 6). Phương trình đường tròn ngoại tiếp tam giác OAB là:

A. x2 + (y – 6)2 = 25 ;               

B. (x – 8)2 + y2 = 25;      

C. (x – 4)2 + (y – 3)2 = 25;             

D. (x + 4)2 + (y + 3)2 = 25.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: C

Ta có: A Ox và B Oy nên tam giác OAB vuông tại O

Do đó tâm I của đường tròn ngoại tiếp tam giác OAB là trung điểm của AB nên I (4; 3)

Mặt khác ta có: R = IA = (84)2+(03)2=5

Vậy phương trình đường tròn ngoại tiếp tam giác OAB là: (x – 4)2 + (y – 3)2 = 25.

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Phương trình nào sau đây không là phương trình đường tròn?

Xem lời giải »


Câu 2:

Đường tròn x2 + y2 – 2x + 10y + 1 = 0 đi qua điểm nào trong các điểm sau đây?

Xem lời giải »


Câu 3:

Phương trình tiếp tuyến d của đường tròn (C): (x + 2)2 + (y + 2)2 = 25 tại điểm M(2; 1) là:

Xem lời giải »


Câu 4:

Cho đường tròn (C) có đường kính AB với A(−2; 1), B(4; 1). Khi đó, phương trình đường tròn (C):

Xem lời giải »


Câu 5:

Giá trị m để đường thẳng ∆: (m – 1)y + mx – 2 = 0 là tiếp tuyến của đường tròn (C): x2 + y2 – 6x + 5 = 0

Xem lời giải »


Câu 6:

Cho đường tròn (C): x2 + y2 − (m + 2)x – (m + 4)y + m + 1 = 0. Giá trị của m để đường tròn (C) đi qua điểm A(2; −3)

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2