Có bao nhiêu số tự nhiên gồm 5 chữ số, các chữ số đều lớn hơn 4 và đôi một khác nhau
Câu hỏi:
Có bao nhiêu số tự nhiên gồm 5 chữ số, các chữ số đều lớn hơn 4 và đôi một khác nhau
A. 240;
B. 120;
C. 360;
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Các chữ số đều lớn hơn 4 nên ta chỉ được chọn từ các số 5, 6, 7, 8, 9
Gọi số tự nhiên cần tìm có dạng .
Công đoạn 1, chọn số a có 5 cách (vì a chọn tuỳ ý một trong các số 5, 6, 7, 8, 9).
Công đoạn 2, chọn số b có 4 cách (vì các chữ số đôi một khác nhau nên b ≠ a, vậy b không chọn lại số a đã chọn nên b có 4 cách chọn).
Công đoạn 3, chọn số c có 3 cách (vì các chữ số đôi một khác nhau nên c ≠ a, c ≠ b vậy c không chọn lại số a, b đã chọn nên c có 3 cách chọn).
Công đoạn 4, chọn số d có 2 cách (vì các chữ số đôi một khác nhau nên b ≠ a, d ≠ b, d ≠ c vậy d không chọn lại số a, b, c đã chọn nên d có 2 cách chọn).
Công đoạn 5, chọn số e có 1 cách (vì các chữ số đôi một khác nhau nên e ≠ a, e ≠ b, e ≠ c, e ≠ d vậy e không chọn lại số a, b, c, d đã chọn nên e có 1 cách chọn)
Tổng kết, theo quy tắc nhân ta có số các số tự nhiên gồm 5 chữ số, các chữ số đều lớn hơn 4 và đôi một khác nhau là: 5.4.3.2.1 = 120 (số)