Elip (E): 4x^2 + 16y^2 = 1 có độ dài trục lớn bằng:
Câu hỏi:
Elip \(\left( E \right):4{x^2} + 16{y^2} = 1\) có độ dài trục lớn bằng:
A. 2;
B. 4;
C. 1;
D. \(\frac{1}{2}.\)
Trả lời:
Đáp án đúng là: C
Gọi phương trình của Elip là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,\) có độ dài trục lớn \({A_1}{A_2} = \)2a.
Xét \(\left( E \right):4{x^2} + 16{y^2} = 1\)\( \Leftrightarrow \frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{1}{{16}}}} = 1\)
\( \Leftrightarrow \)\(\left\{ \begin{array}{l}{a^2} = \frac{1}{4}\\{b^2} = \frac{1}{{16}}\end{array} \right.\)\( \Rightarrow a = \frac{1}{2}\,\)\( \Rightarrow \,\,\,{A_1}{A_2} = 2.\frac{1}{2} = 1.\)