Gieo hai con xúc xắc. Xác suất để tổng số chấm trên hai mặt chia hết cho 3 là:
Câu hỏi:
Gieo hai con xúc xắc. Xác suất để tổng số chấm trên hai mặt chia hết cho 3 là:
A. \(\frac{{13}}{{36}}\);
B. \(\frac{{11}}{{36}}\);
C. \(\frac{1}{3}\);
D. \(\frac{1}{6}\).
Trả lời:
Đáp án đúng là: C
Số phần tử không gian mẫu: n(Ω) = 6.6 = 36
Gọi A là biến cố tổng số chấm hai mặt chia hết cho 3.
Vì tổng số chấm hai mặt chia hết cho 3 nên ta liệt kê số phần tử của biến cố A như sau: A = {(1; 2); (1; 5); (2; 1); (2; 4); (3; 3); (3; 6); (4; 2); (4; 5); (5; 1); (5; 4); (6; 3); (6; 6)} có 12 cặp số thoả mãn nên số phần tử của biến cố A là n(A) = 12.
Suy ra \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{12}}{{36}} = \frac{1}{3}\].
Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:
Câu 1:
Gieo một đồng tiền liên tiếp 3 lần thì số phần tử của không gian mẫu n(Ω) là
Xem lời giải »
Câu 2:
Gieo một con xúc xắc cân đối đồng chất 2 lần. Số phần tử của không gian mẫu là?
Xem lời giải »
Câu 3:
Rút một lá bài từ bộ bài gồm 52 lá. Xác suất để được lá bích là
Xem lời giải »
Câu 4:
Gieo một đồng xu và một con xúc xắc cân đối đồng chất một lần. Số phần tử của không gian mẫu là:
Xem lời giải »
Câu 5:
Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ S. Xác suất chọn được số lớn hơn 2500 là:
Xem lời giải »
Câu 6:
Có 2 học sinh nam và 6 học sinh nữ, xếp thành một hàng ngang một cách ngẫu nhiên. Xác định số phần tử của biến cố A “Hai học sinh nam luôn đứng cạnh nhau”
Xem lời giải »
Câu 7:
Một người bỏ ngẫu nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Xác suất để có ít nhất một lá thư được bỏ đúng phong bì là:
Xem lời giải »
Câu 8:
Một quân vua được đặt trên một ô giữa bàn cờ vua. Mỗi bước di chuyển, quân vua được chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng. Bạn An di chuyển quân vua ngẫu nhiên 3 bước. Tính xác suất sau 3 bước quân vua trở về ô xuất phát.
Xem lời giải »