Hằng ngày bạn Hùng đều đón bạn Minh đi học tại một vị trí trên lề đường thẳng đến trường. Minh đứng tại vị trí A cách lề đường một khoảng 50 m để chờ Hùng. Khi nhìn thấy Hùng đạp xe đến địa đ
Câu hỏi:
Trả lời:
Đổi: 200 m = 0,2 km, 50 m = 0,05 km.
Đặt CH = x (km) (x > 0).
Xét tam giác CHA vuông tại H, theo định lí Pythagore ta có:
CA2 = HA2 + HC2 = (0,05)2 + x2 = 0,0025 + x2
Suy ra CA = hay quãng đường di chuyển của Minh từ vị trí A đến điểm gặp nhau C dài km.
Vận tốc đi bộ của Minh là 5 km/h nên thời gian di chuyển của Minh từ vị trí A đến điểm gặp nhau C là: (giờ).
Xét tam giác HAB vuông tại H, theo định lí Pythagore ta có:
AB2 = HB2 + HA2 ⇔ HB2 = AB2 – HA2 = (0,2)2 – (0,05)2 = 0,0375
Suy ra HB = .
Ta có: BC + CH = HB ⇔ BC = HB – CH = .
Do đó quãng đường di chuyển của Hùng từ B đến điểm gặp nhau C dài km.
Vận tốc đạp xe của Hùng là 15 km/h nên thời gian di chuyển của Hùng từ B đến điểm gặp nhau là: (giờ).
Để hai bạn gặp nhau mà không bạn nào phải chờ người kia thì thời gian di chuyển từ vị trí A đến C của Minh phải bằng thời gian di chuyển từ vị trí B đến C của Hùng.
Khi đó ta có phương trình: (1).
Giải phương trình (1) ta có:
(1)
Bình phương hai vế của phương trình trên ta được:
3600.(0,0025 + x2) = 15 – 40x + 400x2
⇔ 3200x2 + 40x – 6 = 0
⇔ x = hoặc x =
Thay lần lượt các giá trị này vào phương trình (1) ta thấy cả hai giá trị đều thỏa mãn.
Lại có điều kiện của x là x > 0 nên ta chọn x = ≈ 0,0254.
Suy ra BC = BH – CH ≈ km = 168,2 m.
Vậy vị trí C thỏa mãn yêu cầu đề bài là điểm cách B khoảng 168,2 m.