Nếu 3cosx + 2 sinx = 2 và sinx < 0 thì giá trị đúng của sinx là:
Câu hỏi:
Nếu 3cosx + 2 sinx = 2 và sinx < 0 thì giá trị đúng của sinx là:
A. \[ - \frac{5}{{13}}\];
B. \[ - \frac{7}{{13}}\];
C. \[ - \frac{9}{{13}}\];
D. \[ - \frac{{12}}{{13}}\].
Trả lời:
Đáp án đúng là: A
Ta có: 3cosx + 2 sinx = 2
\[ \Leftrightarrow \](3cosx + 2 sinx)2 = 4
\[ \Leftrightarrow \]9cos2x + 12cosx.sinx + 4sin2x = 4(sin2x + cos2x)
\[ \Leftrightarrow \]5cos2x + 12cosx.sinx = 0
\[ \Leftrightarrow \]cosx(5cosx + 12sinx) = 0
\[ \Leftrightarrow \left[ \begin{array}{l}{\rm{cos}}x = 0\\5{\rm{cos}}x + 12\sin x = 0\end{array} \right.\]
Với cosx = 0\[ \Rightarrow \] sinx = 1 loại vì sinx < 0.
Với 5cosx + 12sinx = 0, ta có hệ phương trình: \[\left\{ \begin{array}{l}5{\rm{cos}}x + 12\sin x = 0\\3\cos x + 2\sin x = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\sin x = - \frac{5}{{13}}\\{\rm{cos}}x = \frac{{12}}{{13}}\end{array} \right.\].
Vậy \[\sin x = - \frac{5}{{13}}\].