Phương trình: căn bậc hai (x^2 + x + 4) + căn bậc hai (x^2 + x + 1)
Câu hỏi:
Phương trình: \[\sqrt {{x^2} + x + 4} + \sqrt {{x^2} + x + 1} = \sqrt {2{x^2} + 2x + 9} \] có tích các nghiệm là:
A. P = 1;
B. P = – 1;
C. P = 0;
D. P = 2.
Trả lời:
Đáp án đúng là C
Tập xác định D = ℝ, đặt t = x2 + x + 1 (t ≥ 0).
Phương trình đã cho trở thành \[\sqrt {t + 3} + \sqrt t = \sqrt {2t + 7} \] \[ \Leftrightarrow 2t + 3 + 2\sqrt {t\left( {t + 3} \right)} = 2t + 7\]
\[ \Leftrightarrow \sqrt {t\left( {t + 3} \right)} = 2\]
⇔ t(t + 3) = 4
⇔ t2 + 3t – 4 = 0
\[ \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = - 4\end{array} \right.\]
Kết hợp điều kiện thấy t = 1 thỏa mãn.
Với t = 1 ta có x2 + x + 1 = 1\[ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\end{array} \right.\].
Thay lần lượt các giá trị x = 0 và x = -1 vào phương trình đã cho ta thấy cả hai giá trị đều thỏa mãn.
Vậy tích các nghiệm của phương trình (-1).0 = 0.