Nghiệm của phương trình căn bậc hai (5x^2 - 6x - 4) = 2 (x - 1) là:
Câu hỏi:
Nghiệm của phương trình \[\sqrt {5{x^2} - 6x - 4} = 2(x - 1)\] là:
A. x = – 4;
B. x = 2;
C. x = 1;
D. \[\left[ \begin{array}{l}x = - 4\\x = 2\end{array} \right.\].
Trả lời:
Đáp án đúng là: B
Điều kiện của phương trình 5x2 – 6x – 4 ≥ 0 \[ \Leftrightarrow \left[ \begin{array}{l}x \le \frac{{3 - \sqrt {29} }}{5}\\x \ge \frac{{3 + \sqrt {29} }}{5}\end{array} \right.\]
\[\sqrt {5{x^2} - 6x - 4} = 2(x - 1)\] \[ \Leftrightarrow \left\{ \begin{array}{l}2\left( {x - 1} \right) \ge 0\\5{x^2} - 6x - 4 = 4{\left( {x - 1} \right)^2}\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\{x^2} + 2x - 8 = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\\left[ \begin{array}{l}x = 2\\x = - 4\end{array} \right.\end{array} \right. \Leftrightarrow x = 2\].
Vậy nghiệm của phương trình là x = 2.