Số học sinh giỏi của 12 lớp trong một trường phổ thông được
Câu hỏi:
Số học sinh giỏi của 12 lớp trong một trường phổ thông được ghi lại như sau: 0; 2; 5; 3; 4; 5; 4; 6; 1; 2; 5; 4. Tìm độ lệch chuẩn của mẫu số liệu trên
A. 2,38;
B. 2,28;
C. 1,75;
D. 1,52.
Trả lời:
Đáp án đúng là: C
Ta có \(\overline x = \frac{{0 + 2 + 5 + 3 + 4 + 5 + 4 + 6 + 1 + 2 + 5 + 4}}{{12}} \approx 3,42\).
Ta có bảng sau
Giá trị |
Độ lệch |
Bình phương độ lệch |
0 |
0 – 3,42 = - 3,42 |
11,6964 |
2 |
2 – 3,42 = - 1,42 |
2,0164 |
5 |
5 – 3,42 = 1,58 |
2,4964 |
3 |
3 – 3,42 = - 0, 42 |
0,1764 |
4 |
4 – 3,42 = 0,58 |
0,3364 |
5 |
5 – 3,42 = 1,58 |
2,4964 |
4 |
4 – 3,42 = 0,58 |
0,3364 |
6 |
6 – 3,42 = 2,58 |
6,6564 |
1 |
1 – 3,42 = - 2,42 |
5,8564 |
2 |
2 – 3,42 = - 1,42 |
2,0164 |
5 |
5 – 3,42 = 1,58 |
2,4964 |
4 |
4 – 3,42 = 0,58 |
0,3364 |
Tổng |
36,9168 |
Vì có 12 giá trị nên n = 12. Do đó \({s^2} = \frac{{36,9168}}{{12}} = 3,0764\)
Độ lệch chuẩn s = \(\sqrt {3,0764} \) ≈ 1,75.