Tam giác ABC vuông tại A có AB = 6 cm; BC = 10 cm. Đường tròn


Câu hỏi:

Tam giác ABC vuông tại A có AB = 6 cm; BC = 10 cm. Đường tròn nội tiếp tam giác đó có bán kính r bằng

A. 1 cm;

B. \(\sqrt 2 \) cm;

C. 2 cm;

D. 3 cm.

Trả lời:

Đáp án đúng là: C

Ta có \(AC = \sqrt {B{C^2} - A{B^2}} = 8\)(cm).

Diện tích tam giác ABC là:\(S = \frac{1}{2}AB.AC = 24\left( {c{m^2}} \right)\)

Nửa chu vi \(p = \frac{{6 + 8 + 10}}{2} = 12\) (cm)

Suy ra \(r = \frac{S}{p} = \frac{{24}}{{12}} = 2\)(cm).

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Tam giác ABC A = 120° khẳng định nào sau đây đúng?

Xem lời giải »


Câu 2:

Giá trị của tan(180°) bằng

Xem lời giải »


Câu 3:

Hình bình hành có hai cạnh là 35, một đường chéo bằng 5. Tìm độ dài đường chéo còn lại.

Xem lời giải »


Câu 4:

Cho 0° < α < 90°. Kết luận nào sau đây đúng

Xem lời giải »


Câu 5:

Hình bình hành ABCD có AB = a; \(BC = a\sqrt 2 \)\(\widehat {BAD} = 45^\circ \). Khi đó hình bình hành có diện tích bằng

Xem lời giải »


Câu 6:

Tính góc C của tam giác ABC biết a ≠ b và a(a2 – c2) = b(b2 – c2).

Xem lời giải »


Câu 7:

Tam giác ABC có các cạnh a; b; c thỏa mãn điều kiện:

(a + b + c)(a + b – c) = 3ab. Khi đó số đo của góc C là.

Xem lời giải »


Câu 8:

Tam giác ABCAB = 7; AC = 5 và \(\cos \left( {B + C} \right) = - \frac{1}{5}\). Tính BC

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2