Giải Toán 10 trang 51 Tập 2 Kết nối tri thức
Haylamdo biên soạn và sưu tầm với giải Toán 10 trang 51 Tập 2 trong Bài 22: Ba đường conic Toán lớp 10 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10 trang 51.
Giải Toán 10 trang 51 Tập 2 Kết nối tri thức
Luyện tập 3 trang 51 Toán 10 Tập 2: Cho hình chữ nhật ABCD và M, N tương ứng là trung điểm của các cạnh AB, CD (H.7.25). Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một hypebol có hai tiêu điểm là M và N.
Lời giải:
Do ABCD là hình chữ nhật nên AB = CD.
Vì M, N tương ứng là trung điểm của các cạnh AB, CD nên AM = BM = AB và CN = DN = CD.
Do đó ta có: BM = CN = AM = DN (*).
Khi đó BM // = ND nên BMDN là hình bình hành, suy ra BN = MD (1).
Tương tự AN = CM (2).
Hơn nữa ta chứng minh được BMNC là hình chữ nhật nên hai đường chéo BN và MC bằng nhau hay BN = MC (3).
Từ (1), (2) và (3) suy ra: BN = CM = AN = DM (**).
Từ (*) và (**) ta có: |BN – BM| = |CN – CM| = |AN – AM| = |DN – DM| < MN (bất đẳng thức tam giác).
Vậy A, B, C, D cùng thuộc một hypebol có hai tiêu điểm là M và N.
HĐ4 trang 51 Toán 10 Tập 2: Xét một hypebol (H) với các kí hiệu như trong định nghĩa. Chọn hệ trục Oxy có gốc O là trung điểm của F1F2, tia Ox trùng tia OF2 (H.7.26). Nêu tọa độ của các tiêu điểm F1, F2. Giải thích vì sao điểm M(x; y) thuộc (H) khi và chỉ khi
. (3)
Lời giải:
+) Vì F1F2 = 2c, mà O là trung điểm của F1F2.
Do đó ta có: F1O = F2O = 2c : 2 = c.
Quan sát hình ta thấy, điểm F1 thuộc trục Ox, nằm bên trái điểm O và cách O một khoảng bằng F1O nên tọa độ F1(– c; 0).
Điểm F2 thuộc trục Ox, nằm bên phải điểm O và cách O một khoảng bằng F2O nên tọa độ F2(c; 0).
Vậy tọa độ các tiêu điểm: F1(– c; 0) và F2(c; 0).
+) Giả sử M(x; y) thuộc hypebol (H) ta cần chứng minh:
.
Thật vậy, M thuộc hypebol (H) nên: |MF1 – MF2|= 2a.
Lại có: MF1 = ;
MF2 = .
⇒ |MF1 – MF2| = .
Vậy .
+) Giả sử , ta cần chứng minh M thuộc hypebol (H).
Thật vậy: nên: |MF1 – MF2|= 2a.
Vậy M thuộc hypebol (H).
Lời giải bài tập Toán lớp 10 Bài 22: Ba đường conic Kết nối tri thức hay khác: