Tổng các nghiệm của phương trình x^2 - 2x + 3 căn bậc hai (x^2 - 2x -3) = 7 là:


Câu hỏi:

Tổng các nghiệm của phương trình \[{x^2} - 2x + 3\sqrt {{x^2} - 2x - 3} = 7\] là:

A. 1;

B. 0;

C. 2;

D. \[2\sqrt 2 \].

Trả lời:

Đáp án đúng là: C

Điều kiện của phương trình: x2 – 2x – 3 ≥ 0 \[ \Leftrightarrow \left[ \begin{array}{l}x \ge 3\\x \le - 1\end{array} \right.\]

\[{x^2} - 2x + 3\sqrt {{x^2} - 2x - 3} = 7 \Leftrightarrow {x^2} - 2x - 3 + 3\sqrt {{x^2} - 2x - 3} - 4 = 0\]

Đặt \[\sqrt {{x^2} - 2x - 3} = t(t \ge 0)\] ta có phương trình t2 + 3t – 4 =0\[ \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = - 4\end{array} \right.\]

Kết hợp với điều kiện của t ta thấy t = 1 thỏa mãn

Với t = 1 \[ \Rightarrow \sqrt {{x^2} - 2x - 3} = 1 \Leftrightarrow {x^2} - 2x - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1 + \sqrt 5 \\x = 1 - \sqrt 5 \end{array} \right.\]

Kết hợp với điều kiện của x thì \[x = 1 + \sqrt 5 ;x = 1 - \sqrt 5 \] đều thỏa mãn

Vậy tổng các nghiệm của phương trình S = 2.

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Tập xác định của hàm số \[y = \frac{{x - 1}}{{{x^2} - x + 3}}\]

Xem lời giải »


Câu 2:

Cho hàm số có đồ thị như hình vẽ

Cho hàm số có đồ thị như hình vẽ Kết luận nào sau đây là đúng (ảnh 1)

Kết luận nào sau đây là đúng

Xem lời giải »


Câu 3:

Tọa độ đỉnh I của parabol (P): y = x2 + 8x + 12 là

Xem lời giải »


Câu 4:

Đồ thị hàm số y = – 9x2 + 6x – 1 có dạng là:

Xem lời giải »


Câu 5:

Nghiệm của phương trình \[\sqrt {x - 2} + \sqrt {x + 3} = 5\]

Xem lời giải »


Câu 6:

Hàm số y = – x2 + 2x + 1 đồng biến trên khoảng

Xem lời giải »


Câu 7:

Cho bất phương trình 2x2 – 4x + m + 5 > 0. Tìm m để bất phương trình đúng \(\forall x \ge 3\)?

Xem lời giải »


Câu 8:

Tập ngiệm của bất phương trình: x(x + 5) ≤ 2(x2 + 2) là:

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2