Trong tam giác ABC, hệ thức nào sau đây sai?


Câu hỏi:

Trong tam giác ABC, hệ thức nào sau đây sai?

A. \[a = \frac{{b.\sin A}}{{\sin B}}\];

B. \[\sin C = \frac{{c.\sin A}}{a}\];

C. a = 2R.sinA;

D. b = R.tanB.

Trả lời:

Đáp án đúng là: D

Theo định lí hàm số sin ta có: \[\frac{a}{{\sin A}} = \frac{b}{{{\mathop{\rm sinB}\nolimits} }} = \frac{c}{{{\mathop{\rm sinC}\nolimits} }} = 2R\]

Suy ra:

+ \[\frac{a}{{\sin A}} = \frac{b}{{{\mathop{\rm sinB}\nolimits} }} \Rightarrow a = \frac{{b.\sin A}}{{\sin B}}\]. Do đó đáp án A đúng.

+ \[\frac{a}{{\sin A}} = \frac{c}{{{\mathop{\rm sinC}\nolimits} }} \Rightarrow \sin C = \frac{{c.\sin A}}{a}\]. Do đó đáp án B đúng.

+ \[\frac{a}{{\sin A}} = 2R \Rightarrow a = 2R.\sin A\].Do đó đáp án C đúng.

+ \[\frac{b}{{{\mathop{\rm sinB}\nolimits} }} = 2R \Rightarrow \frac{b}{2} = R\sin B \Rightarrow \frac{b}{{2{\mathop{\rm cosB}\nolimits} }} = R\tan B\]. Do đó đáp án D sai.

Xem thêm bài tập trắc nghiệm Toán 10 KNTT có lời giải hay khác:

Câu 1:

Tính diện tích tam giác có ba cạnh lần lượt là 5; 12; 13.

Xem lời giải »


Câu 2:

Tam giác ABC có \(AC = 3\sqrt 3 \), AB = 3, BC = 6. Tính số đo góc B

Xem lời giải »


Câu 3:

Tam giác ABC có các góc \(\widehat A = 75^\circ ,\widehat B = 45^\circ \). Tính tỉ số \(\frac{{AB}}{{AC}}\).

Xem lời giải »


Câu 4:

Tam giác ABC có các góc \(\widehat B = 30^\circ ,\widehat C = 45^\circ \), AB = 3. Tính cạnh AC.

Xem lời giải »


Câu 5:

Tính diện tích tam giác ABC biết A = 60°; b = 10; c = 20.

Xem lời giải »


Câu 6:

Cho tam giác ABC a = 2, \[b = \sqrt 6 \], \[c = \sqrt 3 + 1\]. Tính bán kính R của đường tròn ngoại tiếp.

Xem lời giải »


Câu 7:

Tam giác ABC vuông tại A có AB = 6 cm; BC = 10 cm. Đường tròn nội tiếp tam giác đó có bán kính r bằng

Xem lời giải »


Câu 8:

Hình bình hành ABCD có AB = a; \(BC = a\sqrt 2 \)\(\widehat {BAD} = 45^\circ \). Khi đó hình bình hành có diện tích bằng

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2