Trong tình huống mở đầu, gọi x và y lần lượt là số máy điều hòa hai chiều và một chiều


Câu hỏi:

Trong tình huống mở đầu, gọi x và y lần lượt là số máy điều hòa hai chiều và một chiều mà cửa hàng cần nhập. Tính số tiền vốn cửa hàng phải bỏ ra để nhập hai loại máy điều hòa theo x và y.

a) Do nhu cầu của thị trường không quá 100 máy nên x và y cần thỏa mãn điều kiện gì?

b) Vì số vốn mà chủ cửa hàng có thể đầu tư không vượt quá 1,2 tỉ đồng nên x và y phải thỏa mãn điều kiện gì?

c) Tính số tiền lãi mà chủ cửa hàng dự kiến thu được theo x và y.

Trả lời:

Gọi số máy điều hòa hai chiều cần nhập là x; số máy điều hòa một chiều cần nhập là y (x; y). Khi đó, số tiền để mua x điều hòa hai chiều là 20x và số tiền để mua y điều hòa một chiều là 10y .

Số tiền vốn cửa hàng phải bỏ ra là 20x + 10y (triệu đồng)

a) Do nhu cầu không quá 100 máy nên x + y 100.

b) Vì số vốn mà cửa hàng có thể đầu tư không vượt quá 1,2 tỉ đồng nên x và y phải thỏa mãn bất phương trình 20x + 10y 1 200 (triệu đồng).

c) Vì mỗi điều hòa hai chiều dự kiến lãi 3,5 triệu đồng/ máy và mỗi điều hòa một chiều dự kiến lãi 2 triệu đồng/máy nên số tiền lãi mà chủ cửa hàng dự kiến thu được theo x và y là: 3,5x + 2y (triệu đồng).

Xem thêm lời giải bài tập Toán 10 Kết nối tri thức hay, chi tiết:

Câu 1:

Trong năm nay, một cửa hàng điện lạnh dự định kinh doanh hai loại máy điều hòa: điều hòa hai chiều và điều hòa một chiều với số vốn ban đầu không vượt quá 1,2 tỉ đồng.

Trong năm nay, một cửa hàng điện lạnh dự định kinh doanh hai loại máy điều hòa: điều hòa (ảnh 1)

Cửa hàng ước tính rằng tổng nhu cầu của thị trường sẽ không vượt quá 100 máy cả hai loại. Nếu là chủ cửa hàng thì em cần đầu tư kinh doanh mỗi loại bao nhiêu máy để lợi nhuận thu được là lớn nhất?

Xem lời giải »


Câu 2:

Trong tình huống mở đầu, gọi x và y lần lượt là số máy điều hòa hai chiều, một chiều mà cửa hàng cần nhập. Từ HĐ1, viết hệ bất phương trình hai ẩn x, y và chỉ ra một nghiệm của hệ này.

Xem lời giải »


Câu 3:

Cho đường thẳng d: x + y = 150 trên mặt phẳng tọa độ Oxy. Đường thẳng này cắt hai trục tọa độ Ox và Oy tại hai điểm A và B.

a) Xác định các miền nghiệm D1, D2, D3 của các bất phương trình tương ứng x ≥ 0, y ≥ 0 và x + y ≤ 150.

b) Miền tam giác OAB (H.2.5) có phải là giao của các miền nghiệm D1, D2, D3 hay không?

Cho đường thẳng d: x + y = 150 trên mặt phẳng tọa độ Oxy. Đường thẳng này cắt (ảnh 1)

c) Lấy một điểm trong tam giác OAB (chẳng hạn điểm (1;2)) hoặc một điểm trên cạnh nào đó của tam giác OAB (chẳng hạn điểm (1;149)) và kiểm tra xem tọa độ của các điểm đó có phải là nghiệm của hệ bất phương trình sau hay không: x0y0x+y150

Xem lời giải »


Câu 4:

Biểu diễn miền nghiệm của hệ bất phương trình bậc nhất hai ẩn sau trên mặt phẳng tọa độ:x0y>0x+y1002x+y<120

Xem lời giải »


Câu 5:

Xét biểu thức F(x; y) = 2x + 3y với (x; y) thuộc miền tam giác OAB ở HĐ2. Tọa độ ba đỉnh là O(0;0), A(150; 0) và B(0; 150) (H.2.5).

a) Tính giá trị của biểu thức F(x; y) tại mỗi đỉnh O, A và B.

b) Nêu nhận xét về dấu của hoành độ x và tung độ y của điểm (x; y) nằm trong miền tam giác OAB. Từ đó suy ra giá trị nhỏ nhất của F(x; y) trên miền tam giác OAB.

c) Nêu nhận xét về tổng x + y của điểm (x; y) nằm trong miền tam giác OAB. Từ đó suy ra giá trị lớn nhất của F(x; y) trên miền tam giác OAB.

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2