Từ mẫu số liệu về thuế thuốc lá của 51 thành phố tại một quốc gia, người ta tính được:


Câu hỏi:

Từ mẫu số liệu về thuế thuốc lá của 51 thành phố tại một quốc gia, người ta tính được:

Giá trị nhỏ nhất bằng 2,5; Q1 = 36; Q2 = 60; Q3 = 100; giá trị lớn nhất bằng 205.

a) Tỉ lệ thành phố có thuế thuốc lá lớn hơn 36 là bao nhiêu?

b) Chỉ ra hai giá trị sao cho có 50% giá trị của mẫu số liệu nằm giữa hai giá trị này?

c) Tìm khoảng tứ phân vị của mẫu số liệu.

Trả lời:

a) Vì số các giá trị của số liệu n = 51 là số lẻ nên trung vị của số liệu là giá trị thứ 26.

Nửa bên trái số trung vị gồm 25 số liệu là số lẻ nên tứ phân vị thứ nhất là giá trị thứ 13 có giá trị là 36.

Do đó có 51 – 13 = 38 thành phố có thuế thuốc lá lớn hơn 36.

Suy ra tỉ lệ các thành phố có thuế thuốc lá lớn hơn 36 là: 385174,51%.

Vậy tỉ lệ các thành phố có thuế thuốc là lớn hơn 36 khoảng 74,51%.

b)

Có nhiều phương án để lựa chọn trong bài này.

Chẳng hạn ta chọn hai giá trị là Q1 và Q3, vì khoảng giữa hai giá trị này là khoảng tứ phân vị và khoảng này là khoảng biến thiên của 50% số liệu chính giữa của mẫu số liệu đã sắp xếp.

Vậy giữa hai giá trị Q1 = 36 và Q3 = 100 có 50% giá trị của mẫu số liệu nằm giữa hai giá trị này.

c) Khoảng tứ phân vị của mẫu số liệu này là:

Q = Q3 – Q1 = 100 – 36 = 64.

Xem thêm lời giải bài tập Toán 10 Kết nối tri thức hay, chi tiết:

Câu 1:

Dưới đây là điểm trung bình môn học kì I của hai bạn An và Bình:

Dưới đây là điểm trung bình môn học kì I của hai bạn An và Bình: (ảnh 1)

Điểm trung bình môn học kì của An và Bình đều là 8,0 nhưng rõ ràng Bình “học đều” hơn An. Có thể dùng những số đặc trưng nào để đo mức độ “học đều”?

Xem lời giải »


Câu 2:

Một cổ động viên đã thống kê điểm số mà hai câu lạc bộ Leicester City và Everton đạt được trong năm mùa giải Ngoại hạng Anh gần đây, từ mùa giải 2014 – 2015 đến mùa giải 2018 – 2019 như sau:

Leicester City: 41   81   44   47   52.

Everton: 47   47   61   49    54.

Cổ động viên cho rằng, Everton thi đấu ổn hơn Leicester City. Em có đồng ý với nhận định này không? Vì sao?

Xem lời giải »


Câu 3:

Mẫu số liệu sau cho biết chiều cao (đơn vị cm) của các bạn trong tổ:

163  159  172  167  165  168  170  161.

Tính khoảng biến thiên của mẫu số liệu này.

Xem lời giải »


Câu 4:

Trong một tuần, nhiệt độ cao nhất trong ngày (đơn vị 0C) tại hai thành phố Hà Nội và Điện Biên được cho như sau:

Hà Nội: 23 25 28 28 32 33 35.

Điện Biên: 16 24 26 26 26 27 28.

a) Tính khoảng biến thiên của mỗi mẫu số liệu và so sánh.

b) Em có nhận xét gì về sự ảnh hưởng của giá trị 16 đến khoảng biến thiên của mẫu số liệu về nhiệt độ cao nhất trong ngày tại Điện Biên?

c) Tính các tứ phân vị và hiệu Q3 – Q1 cho mỗi mẫu số liệu. Có thể dùng hiệu này để đo độ phân tán của mẫu số liệu không?

Xem lời giải »


Câu 5:

Mẫu số liệu sau đây cho biết cân nặng của 10 trẻ sơ sinh (đơn vị kg):

2,977          3,155          3,920          3,412          4,236

2,593          3,270          3,813          4,042          3,387.

Hãy tính khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn cho mẫu số liệu này.

Xem lời giải »


Câu 6:

Tỉ lệ thất nghiệp ở một quốc gia vào năm 2007 (đơn vị %) được cho như sau:

7,8     3,2     7,7     8,7     8,6     8,4     7,2     3,6

5,0     4,4     6,7     7,0     4,5     6,0     5,4.

Hãy tìm các giá trị bất thường (nếu có) của mẫu số liệu trên.

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2