Bài 5 trang 116 Toán 11 Tập 2 Cánh diều


Cho tứ diện OABC thỏa mãn OA = a, OB = b, OC = c, Thể tích của khối tứ diện OABC bằng:

Giải Toán 11 Bài tập cuối chương 8 - Cánh diều

Bài 5 trang 116 Toán 11 Tập 2: Cho tứ diện OABC thỏa mãn OA = a, OB = b, OC = c, AOB^=BOC^=COA^=90°. Thể tích của khối tứ diện OABC bằng:

A. abc;

B. abc2;

C. abc3;

D. abc6.

Lời giải:

Đáp án đúng là: D

Bài 5 trang 116 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Ta có: AOB^=90° nên OA ⊥ OB;

          COA^=90° nên OA ⊥ OC.

Mà OB ∩ OC = O trong (OBC).

Suy ra OA ⊥ (OBC).

BOC^=90° nên tam giác OBC vuông tại O.

Nên ta có diện tích tam giác OBC vuông tại O là: SΔOBC=12OB.OC=12bc.

Thể tích của khối tứ diện OABC với chiều cao OA = a và diện tích đáy SΔOBC=12bc là: VOABC=13SΔOBC.OA=13.12bc.a=abc6.

Lời giải bài tập Toán 11 Bài tập cuối chương 8 hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác: