Giải Toán 11 trang 20 Tập 1 Cánh diều


Với Giải Toán 11 trang 20 Tập 1 trong Bài 2: Các phép biến đổi lượng giác Toán lớp 11 Tập 1 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11 trang 20.

Giải Toán 11 trang 20 Tập 1 Cánh diều

Bài 1 trang 20 Toán 11 Tập 1: Cho cosa = 35 với 0<a<π2. Tính sina+π6, cosaπ3, tana+π4.

Lời giải:

Do 0<a<π2 nên sina>0.

Áp dụng công thức sin2a + cos2a = 1, ta có:

sin2a+352=1

sin2a=1352=1925=1625

sina = 45 (do sina > 0).

Khi đó tana = sinacosa=4535=43.

Áp dụng công thức cộng, ta có:

Bài 1 trang 20 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Bài 2 trang 20 Toán 11 Tập 1: Tính:

A = sin(a – 17°)cos(a + 13°) – sin(a + 13°)cos(a – 17°);

B = cosb+π3cosπ6b - sinb+π3sinπ6b.

Lời giải:

Ta có:

A = sin(a – 17°)cos(a + 13°) – sin(a + 13°)cos(a – 17°)

= sin(a – 17°)cos(a + 13°) – cos(a – 17°)sin(a + 13°)

= sin[(a – 17°) – (a + 13°)]

= sin(a – 17° – a – 13°)

= sin(‒30°)

= ‒ sin30°

=-12 .

Bài 2 trang 20 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Bài 3 trang 20 Toán 11 Tập 1: Cho tan(a + b) = 3, tan(a – b) = 2. Tính: tan2a, tan2b.

Lời giải:

Ta có:

tan2a = tan[(a + b) + (a – b)]

=tana+b+tanab1tana+btanab=3+213.2=55=1;

tan2b = tan[(a + b) ‒ (a – b)]

=tana+btanab1+tana+btanab=321+3.2=17.

Bài 4 trang 20 Toán 11 Tập 1: Cho sina = 25. Tính cos2a, cos4a.

Lời giải:

Áp dụng công thức hạ bậc, ta có:

cos2a = 1 – 2sin2a = 1 -2.252=12.45=35.

cos4a = 2cos2a – 1 = 3521=9251=1625.

Bài 5 trang 20 Toán 11 Tập 1: Cho sina + cosa = 1. Tính: sin2a.

Lời giải:

Ta có: sina + cosa = 1

(sina + cosa)2 = 12

sin2a + 2sina cosa + cos2a = 1

2sina cosa + (sin2a + cos2a) = 1

sin2a + 1 = 1

sin2a = 0.

Vậy với sina + cosa = 1 thì sin2a = 0.

Lời giải bài tập Toán 11 Bài 2: Các phép biến đổi lượng giác Cánh diều hay khác:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác: