Giải Toán 11 trang 20 Tập 1 Cánh diều
Với Giải Toán 11 trang 20 Tập 1 trong Bài 2: Các phép biến đổi lượng giác Toán lớp 11 Tập 1 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11 trang 20.
Giải Toán 11 trang 20 Tập 1 Cánh diều
Bài 1 trang 20 Toán 11 Tập 1: Cho cosa = với 0<a<. Tính sin, cos, tan.
Lời giải:
Do 0<a< nên sina>0.
Áp dụng công thức sin2a + cos2a = 1, ta có:
sina = (do sina > 0).
Khi đó tana = .
Áp dụng công thức cộng, ta có:
Bài 2 trang 20 Toán 11 Tập 1: Tính:
A = sin(a – 17°)cos(a + 13°) – sin(a + 13°)cos(a – 17°);
B = coscos - sinsin.
Lời giải:
Ta có:
A = sin(a – 17°)cos(a + 13°) – sin(a + 13°)cos(a – 17°)
= sin(a – 17°)cos(a + 13°) – cos(a – 17°)sin(a + 13°)
= sin[(a – 17°) – (a + 13°)]
= sin(a – 17° – a – 13°)
= sin(‒30°)
= ‒ sin30°
=- .
Bài 3 trang 20 Toán 11 Tập 1: Cho tan(a + b) = 3, tan(a – b) = 2. Tính: tan2a, tan2b.
Lời giải:
Ta có:
tan2a = tan[(a + b) + (a – b)]
;
tan2b = tan[(a + b) ‒ (a – b)]
.
Bài 4 trang 20 Toán 11 Tập 1: Cho sina = . Tính cos2a, cos4a.
Lời giải:
Áp dụng công thức hạ bậc, ta có:
cos2a = 1 – 2sin2a = 1 -2..
cos4a = 2cos2a – 1 = .
Bài 5 trang 20 Toán 11 Tập 1: Cho sina + cosa = 1. Tính: sin2a.
Lời giải:
Ta có: sina + cosa = 1
(sina + cosa)2 = 12
sin2a + 2sina cosa + cos2a = 1
2sina cosa + (sin2a + cos2a) = 1
sin2a + 1 = 1
sin2a = 0.
Vậy với sina + cosa = 1 thì sin2a = 0.
Lời giải bài tập Toán 11 Bài 2: Các phép biến đổi lượng giác Cánh diều hay khác: