Giải Toán 11 trang 28 Tập 1 Cánh diều


Với Giải Toán 11 trang 28 Tập 1 trong Bài 3: Hàm số lượng giác và đồ thị Toán lớp 11 Tập 1 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11 trang 28.

Giải Toán 11 trang 28 Tập 1 Cánh diều

Hoạt động 10 trang 28 Toán 11 Tập 1: Cho hàm số y = tanx.

a) Tìm giá trị y tương ứng với giá trị của x trong bảng sau:

Hoạt động 10 trang 28 Toán 11 Tập 1 | Cánh diều Giải Toán 11

b) Trong mặt phẳng toạ độ Oxy, hãy biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; tanx) với xπ2;π2 và nối lại ta được đồ thị hàm số y = tan x trên khoảng xπ2;π2 (Hình 28).

c) Làm tương tự như trên đối với các khoảng π2;3π2,3π2;π2, …, ta có đồ thị hàm số y = tan x trên D được biểu diễn ở Hình 29.

Hoạt động 10 trang 28 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Lời giải:

a) Thay từng giá trị của x vào hàm số y = tanx ta có bảng sau:

Hoạt động 10 trang 28 Toán 11 Tập 1 | Cánh diều Giải Toán 11

b) Lấy thêm một số điểm (x; tanx) với xπ2;π2 trong bảng sau và nối lại ta được đồ thị hàm số y = tanx trên khoảng xπ2;π2 (hình vẽ).

Hoạt động 10 trang 28 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Hoạt động 10 trang 28 Toán 11 Tập 1 | Cánh diều Giải Toán 11

c) Làm tương tự như trên đối với các π2;3π2,3π2;π2, …, ta có đồ thị hàm số y = tanx trên D được biểu diễn ở hình vẽ sau:

Hoạt động 10 trang 28 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Hoạt động 11 trang 28 Toán 11 Tập 1: Quan sát đồ thị hàm số y = tanx ở Hình 29.

Hoạt động 11 trang 28 Toán 11 Tập 1 | Cánh diều Giải Toán 11

a) Nêu tập giá trị của hàm số y = tanx.

b) Gốc toạ độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số y = tanx.

c) Bằng cách dịch chuyển đồ thị hàm số y = tanx trên khoảng π2;π2 song song với trục hoành sang phải theo đoạn có độ dài π, ta nhận được đồ thị hàm số y = tanx trên khoảng π2;3π2 hay không? Hàm số y = tanx có tuần hoàn hay không?

d) Tìm khoảng đồng biến, nghịch biến của hàm số y = tanx.

Lời giải:

a) Tập giá trị của hàm số y = tanx là ℝ.

b) Gốc toạ độ là tâm đối xứng của đồ thị hàm số y = tanx.

Do đó hàm số y = tanx là hàm số lẻ.

c)

‒ Bằng cách dịch chuyển đồ thị hàm số y = tanx trên khoảng π2;π2 song song với trục hoành sang phải theo đoạn có độ dài π, ta sẽ nhận được đồ thị hàm số y = tanx trên khoảng π2;3π2.

Làm tương tự như trên ta sẽ được đồ thị hàm số y = tanx trên R\π2+kπ|k.

‒ Xét hàm số f(x) = y = tanx trên D = R\π2+kπ|k, với T = π và x D ta có:

• x + π D và x – π D;

• f(x + π) = f(x)

Do đó hàm số y = tanx là hàm số tuần hoàn với chu kì T = π.

d) Quan sát đồ thị hàm số y = tanx ở Hình 29, ta thấy: đồ thị hàm số đồng biến trên mỗi khoảng 3π2;π2;π2;π2;π2;3π2;...

Ta có: 3π2;π2=π2π;π2π;

π2;3π2=π2+π;π2+π;

Do đó ta có thể viết đồ thị hàm số y = tanx đồng biến trên mỗi khoảng π2+kπ;π2+kπ với k ℤ.

Lời giải bài tập Toán 11 Bài 3: Hàm số lượng giác và đồ thị Cánh diều hay khác:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác: