X

Toán 11 Chân trời sáng tạo

Bài 1 trang 119 Toán 11 Tập 1 Chân trời sáng tạo


Trong mặt phẳng (P) cho hình bình hành ABCD. Ta dựng các nửa đường thẳng song song với nhau và nằm về một phía đối với (P) lần lượT đi qua các điểm A, B, C, D. Một mặt phẳng (Q) cắt bốn nửa đường thẳng nói trên tại A’, B’, C’, D’. Chứng minh rằng:

Giải Toán 11 Bài 4: Hai mặt phẳng song song - Chân trời sáng tạo

Bài 1 trang 119 Toán 11 Tập 1: Trong mặt phẳng (P) cho hình bình hành ABCD. Ta dựng các nửa đường thẳng song song với nhau và nằm về một phía đối với (P) lần lượT đi qua các điểm A, B, C, D. Một mặt phẳng (Q) cắt bốn nửa đường thẳng nói trên tại A’, B’, C’, D’. Chứng minh rằng:

AA’ + CC’ = BB’ + DD’.

Lời giải:

+) Ta có:

(AA’B’B) // (DD’C’C)

(Q) ∩ (AA’B’B) = A’B’

(Q) ∩ (DD’C’C) = D’C’

⇒ A’B’ // D’C’ (1).

+) Tương tự ta có:

(AA’D’D) // (BB’C’C)

(Q) ∩ (AA’D’D) = A’D’

(Q) ∩ (BB’C’C) = B’C’

⇒ A’D’ // B’C’ (2).

Từ (1) và (2) suy ra tứ giác A’B’C’D’ là hình bình hành.

Gọi O và O’ lần lượt là tâm của các hình bình hành ABCD và A’B’C’D’ nên O là trung điểm của AC và BD và O’ là trung điểm của A’C’ và B’D’.

+) Xét tứ giác ACC’A’, có: CC’ // AA’ nên ACC’A’ là hình thang, O là trung điểm của AC và O’ là trung điểm của A’C’ nên OO’ là đường trung bình của hình thang suy ra: OO'=12AA'+CC' (1).

+) Xét tứ giác BB’D’D, có: BB’ // DD’ nên BB’D’D là hình thang, O là trung điểm của BD và O’ là trung điểm của B’D’ nên OO’ là đường trung bình của hình thang suy ra: OO'=12BB'+DD' (2).

Từ (1) và (2) suy ra AA’ + CC’ = BB’ + DD’.

Bài 1 trang 119 Toán 11 Tập 1 Chân trời sáng tạo

Lời giải bài tập Toán 11 Bài 4: Hai mặt phẳng song song hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác: