Bài 3 trang 56 Toán 11 Tập 2 Chân trời sáng tạo


Cho hình chóp S.ABC có SA = SB = SC = a, Cho I và J lần lượt là trung điểm của SA và BC. Chứng minh rằng IJ ⊥ SA và IJ ⊥ BC.

Giải Toán 11 Bài 1: Hai đường thẳng vuông góc - Chân trời sáng tạo

Bài 3 trang 56 Toán 11 Tập 2: Cho hình chóp S.ABC có SA = SB = SC = a, BSA^=CSA^=60°,BSC^=90°. Cho I và J lần lượt là trung điểm của SA và BC. Chứng minh rằng IJ ⊥ SA và IJ ⊥ BC.

Lời giải:

Bài 3 trang 56 Toán 11 Tập 2 Chân trời sáng tạo

Xét tam giác SAB có:

SA = SB = a

BSA^=60°

Tam giác SAB đều.

Mà I là trung điểm của SA ⇒ IB = a32

Xét tam giác SAC có:

SA = SC = a

ASC^=60°

Tam giác SAC đều.

Mà I là trung điểm của SA ⇒ IC = a32

Ta có BSC là tam giác vuông cân tại S.

BC=SB2+SC2=a2

Xét tam giác ABC:

AB = AC = a

AB2 + AC2 = a2 + a2 = 2a2

BC2 = a22= 2a2

AB2 + AC2 = BC2

⇒ Tam giác ABC vuông cân tại A.

Mà J là trung điểm đoạn BC ⇒ AJ ⊥ BC

AJ = AB2BJ2=a2a222=a22

Xét tam giác SBC vuông cân tại S:

Mà J là trung điểm đoạn BC ⇒ SJ ⊥ BC

SJ = SB2BJ2=a2a222=a22

Xét tam giác JSA:

AJ = SJ = a22

Tam giác JSA cân tại J.

Mà I là trung điểm của SA ⇒ IJ là đường trung tuyến của tam giác JSA.

hay IJ ⊥SA.

Xét tam giác IBC:

IB = IC = a32

Tam giác IBC cân tại I.

Mà J là trung điểm của BC ⇒ IJ là đường trung tuyến của tam giác IBC.

hay IJ ⊥BC.

Lời giải bài tập Toán 11 Bài 1: Hai đường thẳng vuông góc hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác: