Bài 4 trang 56 Toán 11 Tập 2 Chân trời sáng tạo


Cho tứ diện đều ABCD cạnh a. Gọi K là trung điểm CD. Tính góc giữa hai đường thẳng AK và BC.

Giải Toán 11 Bài 1: Hai đường thẳng vuông góc - Chân trời sáng tạo

Bài 4 trang 56 Toán 11 Tập 2: Cho tứ diện đều ABCD cạnh a. Gọi K là trung điểm CD. Tính góc giữa hai đường thẳng AK và BC.

Lời giải:

Bài 4 trang 56 Toán 11 Tập 2 Chân trời sáng tạo

Gọi H là trung điểm của BD.

Ta có: K là trung điểm của CD.

Nên HK là đường trung bình tam giác BCD

⇒ HK // BC; HK = 12BC=a2

⇒ (AK, BC) = (AK, HK)

Xét tam giác ABC đều có H là trung điểm của BC ⇒ AH = a32

Xét tam giác ACD đều có K là trung điểm của CD ⇒ AK = a32

Xét tam giác AHK: cosAKH^=AK2+HK2AH22.AK.HK=36

AKH^73,2°

Vậy (AK, BC) = AKH^73,2°

Lời giải bài tập Toán 11 Bài 1: Hai đường thẳng vuông góc hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác: