Bài 6 trang 49 Toán 11 Tập 2 Chân trời sáng tạo


Một công ty xác định rằng tổng chi phí của họ, tính theo nghìn đô-la, để sản xuất x mặt hàng là và công ty lên kế hoạch nâng sản lượng trong t tháng kể từ nay theo hàm số x(t) = 20t + 40. Chi phí sẽ tăng nhanh thế nào sau 4 tháng kể từ khi công ty thực hiện kế hoạch đó?

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm - Chân trời sáng tạo

Bài 6 trang 49 Toán 11 Tập 2: Một công ty xác định rằng tổng chi phí của họ, tính theo nghìn đô-la, để sản xuất x mặt hàng là C(x)=5x2+60 và công ty lên kế hoạch nâng sản lượng trong t tháng kể từ nay theo hàm số x(t) = 20t + 40. Chi phí sẽ tăng nhanh thế nào sau 4 tháng kể từ khi công ty thực hiện kế hoạch đó?

Lời giải:

Ta có C'(x)=5x2+60'=5x2+60'25x2+60=10x25x2+60=5x5x2+60.

Có x'(t) = (20t + 40)' = 20; x(4) = 120.

Khi đó, tốc độ tăng chi phí của công ty sau t tháng là: C'(x(t)) = C'(x)×x'(t).

Tốc độ tăng chi phí của công ty sau 4 tháng kể từ khi công ty thực hiện kế hoạch đó là:

C'(x(4)) = C'(120)×x'(4) =512051202+602044,7 (nghìn đô-la/tháng).

Tốc độ tăng chi phí của công ty sau 4 tháng kể từ khi công ty thực hiện kế hoạch đó khoảng 44,7 nghìn đô/tháng.

Lời giải bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác: