Hoạt động khám phá 3 trang 54 Toán 11 Tập 1 Chân trời sáng tạo
Cho cấp số cộng (u) có công sai d.
Giải Toán 11 Bài 2: Cấp số cộng - Chân trời sáng tạo
Hoạt động khám phá 3 trang 54 Toán 11 Tập 1: Cho cấp số cộng (un) có công sai d.
a) Tính các tổng un + u1; u2 + un-1; u3 + un-2; ...; uk + un-k+1 theo u1, n và d.
b) Chứng tỏ rằng 2(u1 + u2 + u3 + ... + un) = n(u1 + un).
Lời giải:
a) Ta có: un = u1 + (n – 1)d, un-1 = u1 + (n – 1 – 1)d = u1 + (n – 2)d
Khi đó:
u1 + un = u1 + u1 + (n – 1)d = 2u1 + (n – 1)d;
u2 + un-1 = u1 + d + u1 + (n – 2)d = 2u1 + (n – 1)d;
u3 + un-2 = u1 + 2d + u1 + (n – 3)d = 2u1 + (n – 1)d;
...
uk + un-k+1 = u1 + (k – 1)d + u1 + (n – k + 1 – 1)d = 2u1 + (n – 1)d;
Vậy u1 + un = u2 + un-1 = u3 + un-2 = ... = uk + un-k+1.
b) Ta có: 2(u1 + u2 + u3 + ... + un)
= 2[(u1 + un) + (u2 + un-1) + (u3 + un-2) + ... + (uk + un-k+1)]
= 2[(u1 + un) + (u1 + un) + ... + (u1 + un)]
= = n(u1 + un) .
Lời giải bài tập Toán 11 Bài 2: Cấp số cộng hay, chi tiết khác: