X

Toán 11 Chân trời sáng tạo

Giải Toán 11 trang 21 Tập 1 Chân trời sáng tạo


Haylamdo biên soạn và sưu tầm với Giải Toán 11 trang 21 Tập 1 trong Bài 3: Các công thức lượng giác Toán lớp 11 Tập 1 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11 trang 21.

Giải Toán 11 trang 21 Tập 1 Chân trời sáng tạo

Hoạt động khám phá 1 trang 21 Toán 11 Tập 1: Quan sát Hình 1. Từ hai cách tính tích vô hướng của vectơ OMON sau đây:

Hoạt động khám phá 1 trang 21 Toán 11 Tập 1 Chân trời sáng tạo

Hãy suy ra công thức tính cos(α – β) theo các giá trị lượng giác của α và β. Từ đó, hãy suy ra công thức cos(α + β) bằng cách thay β bằng – β.

Lời giải:

Ta có: cos(α – β) = xM.xN + yM.yN = cosα.cosβ + sinα.sinβ.

Ta có: cos(α + β) = cos(α – (– β)) = cosα.cos(–β) + sinα.sin(–β) = cosα.cosβ – sinα.sinβ.

Thực hành 1 trang 21 Toán 11 Tập 1: Tính sinπ12 và tanπ12.

Lời giải:

Thực hành 1 trang 21 Toán 11 Tập 1 Chân trời sáng tạo

Ở ví dụ 1 ta có: cosπ12=6+24

Suy ra tanThực hành 1 trang 21 Toán 11 Tập 1 Chân trời sáng tạo.

Hoạt động khám phá 2 trang 21 Toán 11 Tập 1: Hãy áp dụng công thức cộng cho trường hợp β = α và tính các giá trị lượng giác của góc 2α.

Lời giải:

Ta có:

cos2α = cos(α + α) = cosα.cosα – sinα.sinα = cos2α – sin2α = cos2α + sin2α – 2sin2α = 1 – 2sin2α = 2cos2α – 1.

sin2α = sin(α + α) = sinα.cosα + cosα.sinα = 2.sinα.cosα .

Hoạt động khám phá 2 trang 21 Toán 11 Tập 1 Chân trời sáng tạo.

Lời giải bài tập Toán 11 Bài 3: Các công thức lượng giác Chân trời sáng tạo hay khác:

Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác: