Anh Nam được nhận vào làm việc ở một công ty về công nghệ với mức lương khởi điểm là 100 triệu đồng một năm. Công ty sẽ tăng thêm lương cho anh Nam mỗi năm là 20 triệu đồng. Tính tổng số tiền


Câu hỏi:

Anh Nam được nhận vào làm việc ở một công ty về công nghệ với mức lương khởi điểm là 100 triệu đồng một năm. Công ty sẽ tăng thêm lương cho anh Nam mỗi năm là 20 triệu đồng. Tính tổng số tiền lương mà anh Nam nhận được sau 10 năm làm việc cho công ty đó.

Trả lời:

Lời giải:

Số tiền lương anh Nam nhận được mỗi năm lập thành một cấp số cộng, gồm 10 số hạng, với số hạng đầu u1 = 100 và công sai d = 20.

Tổng 10 số hạng đầu của cấp số cộng này là

S10 = u1 + u2 + ... + u10 = \(\frac{{10}}{2}\left[ {2{u_1} + \left( {10 - 1} \right)d} \right] = \frac{{10}}{2}\left[ {2.100 + 9.20} \right] = 1\,900\).

Vậy số tiền lương mà anh Nam nhận được sau 10 năm làm việc ở công ty này là 1 900 triệu đồng hay 1 tỷ 900 triệu đồng.

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

Một nhà hát có 25 hàng ghế với 16 ghế ở hàng thứ nhất, 18 ghế ở hàng thứ hai, 20 ghế ở hàng thứ 3 và cứ tiếp tục theo quy luật đó, tức là hàng sau nhiều hơn hàng liền trước nó 2 ghế. Tính tổng số ghế của nhà hát đó.

Xem lời giải »


Câu 2:

Cho dãy số (u­n) gồm tất cả các số tự nhiên lẻ, xếp theo thứ tự tăng dần.

a) Viết năm số hạng đầu của dãy số.

b) Dự đoán công thức biểu diễn số hạng un theo số hạng un – 1.

Xem lời giải »


Câu 3:

Dãy số không đổi a, a, a, ... có phải là một cấp số cộng không?

Xem lời giải »


Câu 4:

Cho dãy số (un) với un = – 2n + 3. Chứng minh rằng (un) là một cấp số cộng. Xác định số hạng đầu và công sai của cấp số cộng này.

Xem lời giải »


Câu 5:

Xác định công sai, số hạng thứ 5, số hạng tổng quát và số hạng thứ 100 của mỗi cấp số cộng sau:

a) 4, 9, 14, 19, ...;

b) 1, – 1, – 3, – 5, ....

Xem lời giải »


Câu 6:

Viết năm số hạng đầu của mỗi dãy số (un) sau và xét xem nó có phải là cấp số cộng không. Nếu dãy số đó là cấp số cộng, hãy tìm công sai d và viết số hạng tổng quát của nó dưới dạng un = u1 + (n – 1)d.

a) un = 3 + 5n;

b) un = 6n – 4;

c) u1 = 2, un = un – 1 + n;

d) u1 = 2, un = un – 1 + 3.

Xem lời giải »


Câu 7:

Một cấp số cộng có số hạng thứ 5 bằng 18 và số hạng thứ 12 bằng 32. Tìm số hạng thứ 50 của cấp số cộng này.

Xem lời giải »


Câu 8:

Một cấp số cộng có số hạng đầu bằng 5 và công sai bằng 2. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số cộng này để có tổng bằng 2 700?

Xem lời giải »