Cho hai hàm số f(x) = x^2 và g(x) = – x + 1. a) Xét tính liên tục của hai hàm số trên tại x = 1. b) Tính L = lim x đến 1[ f( x ) + g( x )) và so sánh L với f(1) + g(1).
Câu hỏi:
Cho hai hàm số f(x) = x2 và g(x) = – x + 1.
a) Xét tính liên tục của hai hàm số trên tại x = 1.
b) Tính \(L = \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right]\) và so sánh L với f(1) + g(1).
Trả lời:
Lời giải:
a) Hàm số f(x) = x2 và g(x) = – x + 1 là các hàm đa thức nên nó liên tục trên ℝ.
Do đó, hai hàm số f(x) và g(x) đều liên tục tại x = 1.
b) Ta có: f(x) + g(x) = x2 + (– x + 1) = x2 – x + 1.
Do đó, \(L = \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right]\)\( = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} - x + 1} \right) = {1^2} - 1 + 1 = 1\).
Lại có, f(1) = 12 = 1; g(1) = – 1 + 1 = 0, do đó f(1) + g(1) = 1 + 0 = 1.
Vậy L = f(1) + g(1) = 1.
Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:
Câu 1:
Một người lái xe từ địa điểm A đến địa điểm B trong thời gian 3 giờ. Biết quãng đường từ A đến B dài 180 km. Chứng tỏ rằng có ít nhất một thời điểm trên hành trình, xe chạy với vận tốc 60 km/h.
Xem lời giải »
Câu 2:
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 1}}{{x - 1}}\,\,\,\,\,\,n\^e 'u\,\,\,\,\,x \ne 1\\2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,n\^e 'u\,\,\,\,\,x = 1.\end{array} \right.\)
Tìm giới hạn \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) và so sánh giá trị này với f(1).
Xem lời giải »
Câu 3:
Xét tính liên tục của hàm số \(f\left( x \right) = \left\{ \begin{array}{l} - x\,\,\,\,n\^e 'u\,\,x < 0\\0\,\,\,\,\,\,\,\,n\^e 'u\,\,x = 0\\{x^2}\,\,\,\,\,n\^e 'u\,\,x > 0\end{array} \right.\) tại điểm x0 = 0.
Xem lời giải »
Câu 4:
Cho hai hàm số \(f\left( x \right) = \left\{ \begin{array}{l}2x\,\,\,n\^e 'u\,\,0 \le x \le \frac{1}{2}\\1\,\,\,\,\,\,\,\,n\^e 'u\,\,\,\frac{1}{2} < x \le 1\end{array} \right.\) và \(g\left( x \right) = \left\{ \begin{array}{l}x\,\,\,n\^e 'u\,\,0 \le x \le \frac{1}{2}\\1\,\,\,\,n\^e 'u\,\,\frac{1}{2} < x \le 1\end{array} \right.\) với đồ thị tương ứng như Hình 5.7.
Xét tính liên tục của các hàm số f(x) và g(x) tại điểm \(x = \frac{1}{2}\) và nhận xét về sự khác nhau giữa hai đồ thị.
Xem lời giải »
Câu 6:
Cho f(x) và g(x) là các hàm số liên tục tại x = 1. Biết f(1) = 2 và \(\mathop {\lim }\limits_{x \to 1} \left[ {2f\left( x \right) - g\left( x \right)} \right] = 3\). Tính g(1).
Xem lời giải »
Câu 7:
Xét tính liên tục của các hàm số sau trên tập xác định của chúng:
a) \(f\left( x \right) = \frac{x}{{{x^2} + 5x + 6}}\);
b) \(f\left( x \right) = \left\{ \begin{array}{l}1 + {x^2}\,\,n\^e 'u\,\,x < 1\\4 - x\,\,\,\,n\^e 'u\,\,x \ge 1\end{array} \right.\).
Xem lời giải »
Câu 8:
Tìm giá trị của tham số m để hàm số
\(f\left( x \right) = \left\{ \begin{array}{l}\sin \,x\,\,\,\,\,\,\,\,\,\,\,\,n\^e 'u\,\,x \ge 0\\ - x + m\,\,\,\,\,\,n\^e 'u\,\,x < 0\end{array} \right.\)
liên tục trên ℝ.
Xem lời giải »