Hãy tính các số đặc trưng cho mẫu số liệu trong Bảng 3.1 và giải thích ý nghĩa của các giá trị thu được.
Câu hỏi:
Trả lời:
Lời giải:
Ta có:
Số tiền (nghìn đồng) |
[0; 30) |
[30; 60) |
[60; 90) |
[90; 120) |
Số khách hàng |
3 |
15 |
10 |
7 |
Bảng 3.1. Số tiền khách hàng mua xăng
+) Số trung bình
Trong mỗi khoảng số tiền, giá trị đại diện là trung bình cộng của giá trị hai đầu mút nên ta có bảng sau:
Số tiền (nghìn đồng) |
15 |
45 |
75 |
105 |
Số khách hàng |
3 |
15 |
10 |
7 |
Tổng số khách hàng là n = 35. Số trung bình là
\(\overline x = \frac{{3.15 + 15.45 + 10.75 + 7.105}}{{35}} = 63\).
Số trung bình của mẫu số liệu ghép nhóm xấp xỉ cho số trung bình của mẫu số liệu gốc. Từ đó, ta thấy số tiền bán xăng trung bình của 35 khách hàng xấp xỉ 63 nghìn đồng và có thể dùng làm đại diện cho mẫu số liệu.
Ý nghĩa: Trung bình mỗi người đi xe máy vào mua xăng hết 63 000 đồng.
+) Số trung vị, tứ phân vị
Cỡ mẫu là n = 35.
- Gọi x1, x2, ..., x35 là số tiền xăng của 35 khách hàng và giả sử dãy này đã được sắp xếp theo thứ tự tăng dần. Khi đó, trung vị là x18. Do x18 thuộc nhóm [30; 60) nên nhóm này chứa trung vị. Do đó, p = 2; a2 = 30; m2 = 15; m1 = 3; a3 – a2 = 60 – 30 = 30 và ta có
\({M_e} = 30 + \frac{{\frac{{35}}{2} - 3}}{{15}}.30 = 59\).
Trung vị của mẫu số liệu ghép nhóm xấp xỉ cho trung vị của mẫu số liệu gốc, nó chia mẫu số liệu gốc thành hai phần, mỗi phần chứa 50% giá trị. Từ đó ta thấy trung vị của mẫu số liệu gốc xấp xỉ bằng 59, giá trị này là ngưỡng để chia mẫu số liệu gốc thành 2 phần.
- Tứ phân vị thứ nhất Q1 là x9. Do x9 thuộc nhóm [30; 60) nên nhóm này chứa Q1. Do đó, p = 2; a2 = 30; m2 = 15; m1 = 3; a3 – a2 = 60 – 30 = 30 và ta có
\({Q_1} = 30 + \frac{{\frac{{35}}{4} - 3}}{{15}}.30 = 41,5\).
- Tứ phân vị thứ ba Q3 là x27. Do x27 thuộc nhóm [60; 90) nên nhóm này chứa Q3. Do đó, p = 3; a3 = 60; m3 = 10; m1 + m2 = 3 + 15 = 18; a4 – a3 = 90 – 60 = 30 và ta có
\({Q_3} = 60 + \frac{{\frac{{3.35}}{4} - 18}}{{10}}.30 = 84,75\).
- Tứ phân vị thứ hai Q2 = Me = 59.
Do đó, các tứ phân vị của mẫu số liệu gốc xấp xỉ là Q1 = 41,5; Q2 = 59 và Q3 = 84,75, mỗi giá trị này là các ngưỡng để chia mẫu số liệu thành 4 phần, mỗi phần chứa 25% giá trị.
Ý nghĩa: Có khoảng 25% số khách hàng mua xăng với số tiền ít hơn 41 500 đồng; 50% số khách hàng mua xăng với số tiền ít hơn 59 000 đồng; 75% số khách hàng mua xăng với số tiền ít hơn 84 750 đồng.
+) Mốt
Tần số lớn nhất là 15 nên nhóm chứa mốt là nhóm [30; 60). Ta có, j = 2, a2 = 30, m2 = 15, m1 = 3, m3 = 10, h = 30. Do đó
\({M_o} = 30 + \frac{{15 - 3}}{{\left( {15 - 3} \right) + \left( {15 - 10} \right)}}.30 \approx 51,18\).
Do đó, mốt của mẫu số liệu gốc xấp xỉ bằng 51,18. Vậy số khách hàng mua xăng với giá tiền khoảng 51,18 nghìn đồng là nhiều nhất.