Luyện tập 1 trang 49 Toán 11 Tập 1 - Kết nối tri thức
Cho dãy số (u) với u = – 2n + 3. Chứng minh rằng (u) là một cấp số cộng. Xác định số hạng đầu và công sai của cấp số cộng này.
Giải Toán 11 Bài 6. Cấp số cộng - Kết nối tri thức
Luyện tập 1 trang 49 Toán 11 Tập 1: Cho dãy số (un) với un = – 2n + 3. Chứng minh rằng (un) là một cấp số cộng. Xác định số hạng đầu và công sai của cấp số cộng này.
Lời giải:
Ta có: un – 1 = – 2(n – 1) + 3 = – 2n + 2 + 3 = – 2n + 5
Do đó, un – un – 1 = (– 2n + 3) – (– 2n + 5) = – 2, với mọi n ≥ 2.
Vậy dãy số (un) là cấp số cộng có số hạng đầu là u1 = – 2 . 1 + 3 = 1 và công sai d = – 2.
Lời giải bài tập Toán 11 Bài 6. Cấp số cộng hay, chi tiết khác:
Câu hỏi trang 48 Toán 11 Tập 1: Dãy số không đổi a, a, a, ... có phải là một cấp số cộng không ....
HĐ2 trang 49 Toán 11 Tập 1: Cho cấp số cộng (un) với số hạng đầu u1 và công sai d ....
HĐ3 trang 50 Toán 11 Tập 1: Cho cấp số cộng (un) với số hạng đầu u1 và công sai d ....