Tính các giới hạn một bên: a) lim x 1^ + x - 2/x - 1; b) lim x 4^ - x^2- x + 1/4 - x


Câu hỏi:

Tính các giới hạn một bên:

a) \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{x - 2}}{{x - 1}}\);

b) \(\mathop {\lim }\limits_{x \to {4^ - }} \frac{{{x^2} - x + 1}}{{4 - x}}\).

Trả lời:

Lời giải:

a) Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 1} \right) = 0\), x – 1 > 0 với mọi x > 1 và

\(\mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 2} \right) = 1 - 2 = - 1 < 0\).

Do đó, \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{x - 2}}{{x - 1}} = - \infty \).

b) Ta có: \(\mathop {\lim }\limits_{x \to {4^ - }} \left( {4 - x} \right) = 0\), 4 – x > 0 với mọi x < 4 và

\(\mathop {\lim }\limits_{x \to {4^ - }} \left( {{x^2} - x + 1} \right) = {4^2} - 4 + 1 = 13 > 0\).

Do đó, \(\mathop {\lim }\limits_{x \to {4^ - }} \frac{{{x^2} - x + 1}}{{4 - x}} = + \infty \).

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

Trong Thuyết tương đối của Einstein, khối lượng của vật chuyển động với vận tốc v cho bởi công thức

\(m = \frac{{{m_0}}}{{\sqrt {1 - \frac{{{v^2}}}{{{c^2}}}} }}\),

trong đó m0 là khối lượng của vật khi nó đứng yên, c là vận tốc ánh sáng. Chuyện gì xảy ra với khối lượng của vật khi vận tốc của vật gần với vận tốc ánh sáng?

Xem lời giải »


Câu 2:

Cho hàm số \(f\left( x \right) = \frac{{4 - {x^2}}}{{x - 2}}\).

a) Tìm tập xác định của hàm số f(x).

b) Cho dãy số \({x_n} = \frac{{2n + 1}}{n}\). Rút gọn f(xn) và tính giới hạn của dãy (un) với un = f(xn).

c) Với dãy số (xn) bất kì sao cho xn ≠ 2 và xn 2, tính f(xn) và tìm \(\mathop {\lim }\limits_{n \to + \infty } f\left( {{x_n}} \right)\).

Xem lời giải »


Câu 3:

Tính \(\mathop {\lim }\limits_{x \to 1} \frac{{x - 1}}{{\sqrt x - 1}}\).

Xem lời giải »


Câu 4:

Cho hàm số \(f\left( x \right) = \frac{{\left| {x - 1} \right|}}{{x - 1}}\).

a) Cho \({x_n} = 1 - \frac{1}{{n + 1}}\) và \({x'_n} = 1 + \frac{1}{n}\). Tính yn = f(xn) và y'n = f(x'n).

b) Tìm giới hạn của các dãy số (yn) và (y'n).

c) Cho các dãy số (xn) và (x'n) bất kì sao cho xn < 1 < x'n và xn 1, x'n 1, tính \(\mathop {\lim }\limits_{n \to + \infty } f\left( {{x_n}} \right)\) và \[\mathop {\lim }\limits_{n \to + \infty } f\left( {{{x'}_n}} \right)\].

Xem lời giải »


Câu 5:

Cho hàm số \(g\left( x \right) = \frac{{{x^2} - 5x + 6}}{{\left| {x - 2} \right|}}\).

Tìm \(\mathop {\lim }\limits_{x \to {2^ + }} g\left( x \right)\) và \(\mathop {\lim }\limits_{x \to {2^ - }} g\left( x \right)\).

Xem lời giải »


Câu 6:

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{1 - 2x}}{{\sqrt {{x^2} + 1} }}\);

b) \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 2} - x} \right)\).

Xem lời giải »


Câu 7:

Cho hàm số \(f\left( x \right) = \frac{2}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\).

Tính \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right)\) và \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right)\).

Xem lời giải »