Tính tổng S = 2 + 2/7 + 2/7^2 + ... + 2/7^n - 1 +


Câu hỏi:

Tính tổng \(S = 2 + \frac{2}{7} + \frac{2}{{{7^2}}} + ... + \frac{2}{{{7^{n - 1}}}} + ...\)

Trả lời:

Lời giải:

\(S = 2 + \frac{2}{7} + \frac{2}{{{7^2}}} + ... + \frac{2}{{{7^{n - 1}}}} + ...\)

Đây là tổng của cấp số nhân lùi vô hạn với u1 = 2 và q = \(\frac{1}{7}\).

Do đó, \(S = \frac{{{u_1}}}{{1 - q}} = \frac{2}{{1 - \frac{1}{7}}} = \frac{7}{3}\).

Xem thêm lời giải bài tập Toán 11 Kết nối tri thức hay, chi tiết:

Câu 1:

Cho dãy số (u) với \({u_n} = \frac{{{{\left( { - 1} \right)}^n}}}{n}\).

a) Biểu diễn năm số hạng đầu của dãy số này trên trục số.

b) Bắt đầu từ số hạng nào của dãy, khoảng cách từ un đến 0 nhỏ hơn 0,01?

Xem lời giải »


Câu 2:

Chứng minh rằng \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{{\left( { - 1} \right)}^{n - 1}}}}{{{3^n}}} = 0\).

Xem lời giải »


Câu 3:

Cho dãy số (un) với \({u_n} = \frac{{n + {{\left( { - 1} \right)}^n}}}{n}\). Xét dãy số (vn) xác định bởi vn = un – 1.

Tính \(\mathop {\lim }\limits_{n \to + \infty } {v_n}\).

Xem lời giải »


Câu 4:

Cho dãy số (un) với \({u_n} = \frac{{{{3.2}^n} - 1}}{{{2^n}}}\). Chứng minh rằng \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 3\).

Xem lời giải »


Câu 5:

Để đơn giản, ta giả sử Achilles chạy với vận tốc 100 km/h, vận tốc của rùa là 1 km/h và khoảng cách ban đầu là a = 100 (km).

a) Tính thời gian t1, t2, ..., tn, ... tương ứng để Achilles đi từ A1 đến A2, từ A2 đến A3, ... từ An đến An + 1, ...

b) Tính tổng thời gian cần thiết để Achilles chạy hết các quãng đường A1A2, A2A3, ..., A­nAn + 1, ..., tức là thời gian cần thiết để Achilles đuổi kịp rùa.

c) Sai lầm trong lập luận của Zeno là ở đâu?

Xem lời giải »


Câu 6:

Một loại vi khuẩn được nuôi cấy với số lượng ban đầu là 50. Sau mỗi chu kì 4 giờ, số lượng của chúng sẽ tăng gấp đôi.

a) Dự đoán công thức tính số vi khuẩn un sau chu kì thứ n.

b) Sau bao lâu, số lượng vi khuẩn sẽ vượt con số 10 000?

Xem lời giải »


Câu 7:

Tính \(\mathop {\lim }\limits_{n \to + \infty } \left( {n - \sqrt n } \right)\).

Xem lời giải »


Câu 8:

Tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2} + n + 1}}{{2{n^2} + 1}}\);

b) \(\mathop {\lim }\limits_{n \to + \infty } \left( {\sqrt {{n^2} + 2n} - n} \right)\).

Xem lời giải »