Bài 1 trang 88 Toán 12 Tập 1 Cánh diều
biểu diễn mẫu số liệu ghép nhóm về số tiền (đơn vị: nghìn đồng) mà 60 khách hàng mua sách ở một cửa hàng trong một ngày.
Giải Toán 12 Bài 1: Khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm - Cánh diều
Bài 1 trang 88 Toán 12 Tập 1: Bảng 8 biểu diễn mẫu số liệu ghép nhóm về số tiền (đơn vị: nghìn đồng) mà 60 khách hàng mua sách ở một cửa hàng trong một ngày.
a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là:
A. 50.
B. 30.
C. 6.
D. 69,8.
b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là:
A. 50.
B. 40.
C. 14,23.
D. 70,87.
Lời giải:
a) Đáp án đúng là: A
Trong mẫu số liệu ghép nhóm ở Bảng 8, ta có: đầu mút trái của nhóm 1 là a1 = 40, đầu mút phải của nhóm 5 là a6 = 90.
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là:
R = a6 – a1 = 90 – 40 = 50 (nghìn đồng).
b) Đáp án đúng là: C
Từ Bảng 8 ta có bảng sau:
Số phần tử của mẫu là n = 60.
- Ta có: mà 9 < 15 < 28. Suy ra nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 15. Xét nhóm 3 là nhóm [60; 70) có s = 60; h = 10; n3 = 19 và nhóm 2 là nhóm [50; 60) có cf2 = 9.
Áp dụng công thức, ta có tứ phân vị thứ nhất là
(nghìn đồng).
- Ta có: mà 28 < 45 < 51. Suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 45. Xét nhóm 4 là nhóm [70; 80) có t = 70; l = 10; n4 = 23 và nhóm 3 là nhóm [60; 70) có cf3 = 28.
Áp dụng công thức, ta có tứ phân vị thứ ba là
(nghìn đồng).
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:
∆Q = Q3 – Q1 = ≈ 14,23 (nghìn đồng).
Lời giải bài tập Toán 12 Bài 1: Khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm hay, chi tiết khác: