Bài 3 trang 88 Toán 12 Tập 1 Cánh diều
biểu diễn mẫu số liệu ghép nhóm về độ tuổi của cư dân trong một khu phố.
Giải Toán 12 Bài 1: Khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm - Cánh diều
Bài 3 trang 88 Toán 12 Tập 1: Bảng 10 biểu diễn mẫu số liệu ghép nhóm về độ tuổi của cư dân trong một khu phố.
a) Tính khoảng biến thiên của mẫu số liệu ghép nhóm đó.
b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm đó.
Lời giải:
a) Trong mẫu số liệu ghép nhóm ở Bảng 10, ta có: đầu mút trái của nhóm 1 là a1 = 20, đầu mút phải của nhóm 6 là a7 = 80.
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là:
R = a7 – a1 = 80 – 20 = 60.
b) Từ Bảng 10 ta có bảng sau:
Số phần tử của mẫu là n = 100.
- Ta có: . Suy ra nhóm 1 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 25. Xét nhóm 1 là nhóm [20; 30) có s = 20; h = 10; n1 = 25.
Áp dụng công thức, ta có tứ phân vị thứ nhất là
.
- Ta có: mà 65 < 75 < 80. Suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 75. Xét nhóm 4 là nhóm [50; 60) có t = 50; l = 10; n4 = 15 và nhóm 3 là nhóm [40; 50) có cf3 = 65.
Áp dụng công thức, ta có tứ phân vị thứ ba là
.
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:
∆Q = Q3 – Q1 = ≈ 26,67.
Lời giải bài tập Toán 12 Bài 1: Khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm hay, chi tiết khác: