Bài 3 trang 13 Toán 12 Tập 1 Cánh diều
Tìm các khoảng đơn điệu của mỗi hàm số sau:
Giải Toán 12 Bài 1: Tính đơn điệu của hàm số - Cánh diều
Bài 3 trang 13 Toán 12 Tập 1: Tìm các khoảng đơn điệu của mỗi hàm số sau:
a) y = – x3 + 2x2 – 3;
b) y = x4 + 2x2 + 5;
c) ;
d)
Lời giải:
a)
● Hàm số đã cho có tập xác định là ℝ.
● Ta có y' = – 3x2 + 4x;
y' = 0 ⇔ – 3x2 + 4x = 0 ⇔ x(3x – 4) = 0 ⇔ x = 0 hoặc x = .
Bảng biến thiên của hàm số như sau:
Vậy hàm số đồng biến trên khoảng và nghịch biến trên mỗi khoảng (– ∞; 0) và .
b) y = x4 + 2x2 + 5
● Hàm số đã cho có tập xác định là ℝ.
● Ta có y' = 4x2 + 4x;
y' = 0 ⇔ 4x2 + 4x = 0 ⇔ x(x + 1) = 0 ⇔ x = – 1 hoặc x = 0.
Bảng biến thiên của hàm số như sau:
Vậy hàm số đồng biến trên mỗi khoảng (– ∞; – 1), (0; + ∞) và nghịch biến trên khoảng (– 1; 0).
c)
● Hàm số đã cho có tập xác định là ℝ\{2}.
● Ta có với x ≠ 2;
y' > 0 với mọi x ≠ 2.
Bảng biến thiên của hàm số như sau:
Vậy hàm số đồng biến trên mỗi khoảng (– ∞; 2) và (2; + ∞).
d)
● Hàm số đã cho có tập xác định là ℝ\{– 1}.
● Ta có với x ≠ – 1;
y' = 0 ⇔ x2 + 2x – 2 = 0 ⇔ x = - 1 - hoặc x = -1 + .
Bảng biến thiên của hàm số như sau:
Vậy hàm số đồng biến trên mỗi khoảng và ; nghịch biến trên mỗi khoảng và .
Lời giải bài tập Toán 12 Bài 1: Tính đơn điệu của hàm số hay, chi tiết khác:
Luyện tập 1 trang 6 Toán 12 Tập 1: Xét dấu y' rồi tìm khoảng đồng biến, nghịch biến của hàm số ....
Luyện tập 2 trang 7 Toán 12 Tập 1: Tìm các khoảng đơn điệu của hàm số y = x4 + 2x2 – 3.....
Hoạt động 2 trang 7 Toán 12 Tập 1: Xác định tính đồng biến, nghịch biến của hàm số f(x) = x3...
Luyện tập 4 trang 8 Toán 12 Tập 1: Tìm các khoảng đơn điệu của hàm số ....