Giải Toán 12 trang 65 Tập 2 Chân trời sáng tạo


Haylamdo biên soạn và sưu tầm lời giải bài tập Toán 12 trang 65 Tập 2 trong Bài 3: Phương trình mặt cầu Toán 12 Tập 2 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 65.

Giải Toán 12 trang 65 Tập 2 Chân trời sáng tạo

Bài 1 trang 65 Toán 12 Tập 2: Viết phương trình mặt cầu (S):

a) Có tâm I(7; −3; 0), bán kính R = 8;

b) Có tâm M(3; 1; −4) và đi qua điểm N(1; 0; 1);

c) Có đường kính AB với A(4; 6; 8) và B(2; 4; 4).

Lời giải:

a) Mặt cầu (S) có tâm I(7; −3; 0), bán kính R = 8 có phương trình là

(x – 7)2 + (y + 3)2 + z2 = 64.

b) Bán kính của mặt cầu là MN=132+012+1+42=30

Mặt cầu (S) có tâm M(3; 1; −4) , bán kính R=30 có phương trình là:

(x – 3)2 + (y – 1)2 + (z + 4)2 = 30.

c) Có I(3; 5; 6) là trung điểm của AB, bán kính của mặt cầu là IA=432+652+862=6.

Mặt cầu (S) có tâm I(3; 5; 6) và bán kính R=6 có phương trình là:

(x – 3)2 + (y – 5)2 + (z – 6)2 = 6.

Bài 2 trang 65 Toán 12 Tập 2: Trong các phương trình sau, phương trình nào là phương trình mặt cầu? Xác định tâm và bán kính của mặt cầu đó.

a) x2 + y2 + z2 + 5x – 7y + z – 1 = 0;

b) x2 + y2 + z2 + 4x + 6y – 2z + 100 = 0;

c) x2 + y2 + z2 – x – y – z + 12= 0.

Lời giải:

a) Phương trình x2 + y2 + z2 + 5x – 7y + z – 1 = 0 có dạng x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với a=52;b=72;c=12;d=1.

a2+b2+c2d=522+722+122+1=794>0.

Do đó đây là phương trình mặt cầu với tâm I52;72;12,R=792.

b) Phương trình x2 + y2 + z2 + 4x + 6y – 2z + 100 = 0 có dạng x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với a = −2; b = −3; c = 1 và d = 100.

Có a2 + b2 + c2 – d = 4 + 9 + 1 – 100 = −86 < 0.

Do đó đây không phải là phương trình mặt cầu.

c) Phương trình x2 + y2 + z2 – x – y – z + 12 = 0 có dạng x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với a=12;b=12;c=12;d=12.

a2+b2+c2d=122+122+12212=14>0.

Do đó đây là phương trình mặt cầu với tâm I12;12;12R=12.

Bài 3 trang 65 Toán 12 Tập 2: Cho hai điểm A(1; 0; 0) và B(5; 0; 0). Chứng minh rằng nếu điểm M(x; y; z) thỏa mãn MA.MB=0 thì M thuộc một mặt cầu (S). Tìm tâm và bán kính của (S).

Lời giải:

Ta có MA=x1;y;z,MB=x5;y;z.

MA.MB=0 ⇔ (x – 1)(x – 5) + y2 + z2 = 0

⇔ x2 – 6x + 9 + y2 + z2 – 4 = 0

⇔ (x – 3)2 + y2 + z2 = 4.

Do đó M luôn thuộc mặt cầu tâm I(3; 0; 0) và R = 2.

Bài 4 trang 65 Toán 12 Tập 2: Phần mềm mô phỏng thiết bị thám hiểm đại dương có dạng hình cầu trong không gian Oxyz. Cho biết tọa độ tâm mặt cầu là I(360; 200; 400) và bán kính r = 2 m. Viết phương trình mặt cầu.

Bài 4 trang 65 Toán 12 Tập 2 Chân trời sáng tạo | Giải Toán 12

Lời giải:

Mặt cầu có tâm I(360; 200; 400) và bán kính r = 2 có phương trình là:

(x – 360)2 + (y – 200)2 + (z – 400)2 = 4.

Bài 5 trang 65 Toán 12 Tập 2: Người ta muốn thiết kế một bồn chứa khí hóa lỏng hình cầu bằng phần mềm 3D. Cho biết phương trình bề mặt của bồn chứa là (S): (x – 6)2 + (y – 6)2 + (z – 6)2 = 25. Phương trình mặt phẳng chứa nắp là (P): z = 10.

a) Tìm tâm và bán kính của bồn chứa.

b) Tính khoảng cách từ tâm bồn chứa đến mặt phẳng chứa nắp.

Bài 5 trang 65 Toán 12 Tập 2 Chân trời sáng tạo | Giải Toán 12

Lời giải:

a) Tâm của bồn chứa I(6; 6; 6) và bán kính R = 5.

b) Ta có dI,(P)=61012=4.

Lời giải bài tập Toán 12 Bài 3: Phương trình mặt cầu hay khác:

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác: