Giải Toán 12 trang 65 Tập 2 Chân trời sáng tạo
Haylamdo biên soạn và sưu tầm lời giải bài tập Toán 12 trang 65 Tập 2 trong Bài 3: Phương trình mặt cầu Toán 12 Tập 2 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 65.
Giải Toán 12 trang 65 Tập 2 Chân trời sáng tạo
Bài 1 trang 65 Toán 12 Tập 2: Viết phương trình mặt cầu (S):
a) Có tâm I(7; −3; 0), bán kính R = 8;
b) Có tâm M(3; 1; −4) và đi qua điểm N(1; 0; 1);
c) Có đường kính AB với A(4; 6; 8) và B(2; 4; 4).
Lời giải:
a) Mặt cầu (S) có tâm I(7; −3; 0), bán kính R = 8 có phương trình là
(x – 7)2 + (y + 3)2 + z2 = 64.
b) Bán kính của mặt cầu là MN=√(1−3)2+(0−1)2+(1+4)2=√30
Mặt cầu (S) có tâm M(3; 1; −4) , bán kính R=√30 có phương trình là:
(x – 3)2 + (y – 1)2 + (z + 4)2 = 30.
c) Có I(3; 5; 6) là trung điểm của AB, bán kính của mặt cầu là IA=√(4−3)2+(6−5)2+(8−6)2=√6.
Mặt cầu (S) có tâm I(3; 5; 6) và bán kính R=√6 có phương trình là:
(x – 3)2 + (y – 5)2 + (z – 6)2 = 6.
Bài 2 trang 65 Toán 12 Tập 2: Trong các phương trình sau, phương trình nào là phương trình mặt cầu? Xác định tâm và bán kính của mặt cầu đó.
a) x2 + y2 + z2 + 5x – 7y + z – 1 = 0;
b) x2 + y2 + z2 + 4x + 6y – 2z + 100 = 0;
c) x2 + y2 + z2 – x – y – z + 12= 0.
Lời giải:
a) Phương trình x2 + y2 + z2 + 5x – 7y + z – 1 = 0 có dạng x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với a=−52;b=72;c=−12;d=−1.
Có a2+b2+c2−d=(−52)2+(72)2+(−12)2+1=794>0.
Do đó đây là phương trình mặt cầu với tâm I(−52;72;−12),R=√792.
b) Phương trình x2 + y2 + z2 + 4x + 6y – 2z + 100 = 0 có dạng x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với a = −2; b = −3; c = 1 và d = 100.
Có a2 + b2 + c2 – d = 4 + 9 + 1 – 100 = −86 < 0.
Do đó đây không phải là phương trình mặt cầu.
c) Phương trình x2 + y2 + z2 – x – y – z + 12 = 0 có dạng x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với a=12;b=12;c=12;d=12.
Có a2+b2+c2−d=(12)2+(12)2+(12)2−12=14>0.
Do đó đây là phương trình mặt cầu với tâm I(12;12;12) và R=12.
Bài 3 trang 65 Toán 12 Tập 2: Cho hai điểm A(1; 0; 0) và B(5; 0; 0). Chứng minh rằng nếu điểm M(x; y; z) thỏa mãn →MA.→MB=0 thì M thuộc một mặt cầu (S). Tìm tâm và bán kính của (S).
Lời giải:
Ta có →MA=(x−1;y;z),→MB=(x−5;y;z).
Có →MA.→MB=0 ⇔ (x – 1)(x – 5) + y2 + z2 = 0
⇔ x2 – 6x + 9 + y2 + z2 – 4 = 0
⇔ (x – 3)2 + y2 + z2 = 4.
Do đó M luôn thuộc mặt cầu tâm I(3; 0; 0) và R = 2.
Bài 4 trang 65 Toán 12 Tập 2: Phần mềm mô phỏng thiết bị thám hiểm đại dương có dạng hình cầu trong không gian Oxyz. Cho biết tọa độ tâm mặt cầu là I(360; 200; 400) và bán kính r = 2 m. Viết phương trình mặt cầu.
Lời giải:
Mặt cầu có tâm I(360; 200; 400) và bán kính r = 2 có phương trình là:
(x – 360)2 + (y – 200)2 + (z – 400)2 = 4.
Bài 5 trang 65 Toán 12 Tập 2: Người ta muốn thiết kế một bồn chứa khí hóa lỏng hình cầu bằng phần mềm 3D. Cho biết phương trình bề mặt của bồn chứa là (S): (x – 6)2 + (y – 6)2 + (z – 6)2 = 25. Phương trình mặt phẳng chứa nắp là (P): z = 10.
a) Tìm tâm và bán kính của bồn chứa.
b) Tính khoảng cách từ tâm bồn chứa đến mặt phẳng chứa nắp.
Lời giải:
a) Tâm của bồn chứa I(6; 6; 6) và bán kính R = 5.
b) Ta có d(I,(P))=|6−10|√12=4.
Lời giải bài tập Toán 12 Bài 3: Phương trình mặt cầu hay khác: