Bài 6.5 trang 70 Toán 12 Tập 2 - Kết nối tri thức


Bạn An phải thực hiện hai thí nghiệm liên tiếp. Thí nghiệm thứ nhất có xác suất thành công là 0,7. Nếu thí nghiệm thứ nhất thành công thì xác suất thành công của thí nghiệm thứ hai là 0,9. Nếu thí nghiệm thứ nhất không thành công thì xác suất thành công của thí nghiệm thứ hai chỉ là 0,4. Tính xác suất để:

Giải Toán 12 Bài 18: Xác suất có điều kiện - Kết nối tri thức

Bài 6.5 trang 70 Toán 12 Tập 2: Bạn An phải thực hiện hai thí nghiệm liên tiếp. Thí nghiệm thứ nhất có xác suất thành công là 0,7. Nếu thí nghiệm thứ nhất thành công thì xác suất thành công của thí nghiệm thứ hai là 0,9. Nếu thí nghiệm thứ nhất không thành công thì xác suất thành công của thí nghiệm thứ hai chỉ là 0,4. Tính xác suất để:

a) Cả hai thí nghiệm đều thành công;

b) Cả hai thí nghiệm đều không thành công;

c) Thí nghiệm thứ nhất thành công và thí nghiệm thứ hai không thành công.

Lời giải:

a) Gọi A là biến cố: “Thí nghiệm thứ nhất thành công” và B là biến cố: “Thí nghiệm thứ hai thành công”. Khi đó biến cố “Cả hai thí nghiệm đều thành công” là AB.

Theo công thức nhân xác suất ta có P(AB) = P(A) ∙ P(B | A).

Theo bài ra ta có P(A) = 0,7; P(B | A) = 0,9.

Thay vào ta được P(AB) = 0,7 ∙ 0,9 = 0,63.

b) Biến cố: “Cả hai thí nghiệm đều không thành công” là A¯B¯.

Theo công thức nhân xác suất ta có PA¯B¯ = PA¯PB¯|A¯.

Ta có PB¯|A¯ là xác suất để thí nghiệm thứ hai không thành công nếu thí nghiệm thứ nhất không thành công. Do đó, từ dữ kiện của bài toán ta có:

 PB¯|A¯ = 1  0,4 = 0,6 ; PA¯ = 1  PA = 1  0,7 = 0,3.

Vậy PA¯B¯ = 0,30,6 = 0,18.

c) Biến cố “Thí nghiệm thứ nhất thành công và thí nghiệm thứ hai không thành công” là PAB¯ = PAPB¯|A.

Theo công thức nhân xác suất ta có PAB¯ = PAPB¯|A.

Ta có PB¯|A là xác suất để thí nghiệm thứ hai không thành công nếu thí nghiệm thứ nhất thành công. Do đó từ dữ kiện của bài toán ta có

 PB¯|A = 1  0,9 = 0,1;   PA = 0,7.

Vậy PB¯|A = 0,7 0,1 = 0,07

Lời giải bài tập Toán 12 Bài 18: Xác suất có điều kiện hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác: