HĐ3 trang 6 Toán 12 Tập 2 - Kết nối tri thức
Cho f(x) là hàm số liên tục trên K, k là một hằng số khác 0. Giả sử F(x) là một nguyên hàm của f(x) trên K.
Giải Toán 12 Bài 11: Nguyên hàm - Kết nối tri thức
HĐ3 trang 6 Toán 12 Tập 2: Cho f(x) là hàm số liên tục trên K, k là một hằng số khác 0. Giả sử F(x) là một nguyên hàm của f(x) trên K.
a) Chứng minh kF(x) là một nguyên hàm của hàm số kf(x) trên K.
b) Nêu nhận xét về và .
Lời giải:
a) Vì F(x) là một nguyên hàm của f(x) trên K nên F'(x) = f(x).
Ta cần chứng minh (kF(x))' = kf(x).
Ta có (kF(x))' = k(F(x))' = kf(x).
Vậy kF(x) là một nguyên hàm của hàm số kf(x) trên K.
b) Vì F(x) là một nguyên hàm của f(x) trên K nên .
Có .
Vì C' ta có thể viết lại bằng kC. Tức là C' = kC.
Do đó .
Vậy .
Lời giải bài tập Toán 12 Bài 11: Nguyên hàm hay, chi tiết khác:
HĐ1 trang 4 Toán 12 Tập 2: Cho hai hàm số f(x) = x2 + 1 và , với x ∈ ℝ. ....
HĐ2 trang 5 Toán 12 Tập 2: Chứng minh rằng hàm số là một nguyên hàm của hàm số f(x) = x3 trên ℝ ....