HĐ3 trang 6 Toán 12 Tập 2 - Kết nối tri thức


Cho f(x) là hàm số liên tục trên K, k là một hằng số khác 0. Giả sử F(x) là một nguyên hàm của f(x) trên K.

Giải Toán 12 Bài 11: Nguyên hàm - Kết nối tri thức

HĐ3 trang 6 Toán 12 Tập 2: Cho f(x) là hàm số liên tục trên K, k là một hằng số khác 0. Giả sử F(x) là một nguyên hàm của f(x) trên K.

a) Chứng minh kF(x) là một nguyên hàm của hàm số kf(x) trên K.

b) Nêu nhận xét về kfxdxkfxdx.

Lời giải:

a) Vì F(x) là một nguyên hàm của f(x) trên K nên F'(x) = f(x).

Ta cần chứng minh (kF(x))' = kf(x).

Ta có (kF(x))' = k(F(x))' = kf(x).

Vậy kF(x) là một nguyên hàm của hàm số kf(x) trên K.

b) Vì F(x) là một nguyên hàm của f(x) trên K nên fxdx=Fx+C.

kfxdx=kFx+C'.

Vì C' ta có thể viết lại bằng kC. Tức là C' = kC.

Do đó kfxdx=kFx+kC=kFx+C=kfxdx.

Vậy kfxdx=kfxdx.

Lời giải bài tập Toán 12 Bài 11: Nguyên hàm hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác: