Mở đầu trang 4 Toán 12 Tập 2 - Kết nối tri thức
Một máy bay di chuyển ra đến đường băng và bắt đầu chạy đà để cất cánh. Giả sử vận tốc của máy bay khi chạy đà được cho bởi v(t) = 5 + 3t (m/s), với t là thời gian (tính bằng giây) kể từ khi máy bay bắt đầu chạy đà. Sau 30 giây thì máy bay cất cánh rời đường băng. Quãng đường máy bay đã di chuyển kể từ khi bắt đầu chạy đà đến khi rời đường băng là bao nhiêu mét?
Giải Toán 12 Bài 11: Nguyên hàm - Kết nối tri thức
Mở đầu trang 4 Toán 12 Tập 2: Một máy bay di chuyển ra đến đường băng và bắt đầu chạy đà để cất cánh. Giả sử vận tốc của máy bay khi chạy đà được cho bởi v(t) = 5 + 3t (m/s), với t là thời gian (tính bằng giây) kể từ khi máy bay bắt đầu chạy đà. Sau 30 giây thì máy bay cất cánh rời đường băng. Quãng đường máy bay đã di chuyển kể từ khi bắt đầu chạy đà đến khi rời đường băng là bao nhiêu mét?
Lời giải:
Sau khi học xong bài này, ta giải quyết bài toán này như sau:
Gọi S(t) (0 ≤ t ≤ 30) là quãng đường máy bay di chuyển được sau t giây kể từ lúc bắt đầu chạy đà.
Ta có v(t) = S'(t). Do đó, S(t) là một nguyên hàm của hàm số vận tốc v(t). Sử dụng tính chất của nguyên hàm ta được
Theo giả thiết, S(0) = 0 nên C = 0 và ta được .
Máy bay rời đường băng khi t = 30 giây nên
Vậy quãng đường máy bay đã di chuyển kể từ khi bắt đầu chạy đà đến khi rời đường băng là 1500 m.
Lời giải bài tập Toán 12 Bài 11: Nguyên hàm hay, chi tiết khác:
HĐ1 trang 4 Toán 12 Tập 2: Cho hai hàm số f(x) = x2 + 1 và , với x ∈ ℝ. ....
HĐ2 trang 5 Toán 12 Tập 2: Chứng minh rằng hàm số là một nguyên hàm của hàm số f(x) = x3 trên ℝ ....