Giải Toán 12 trang 13 Tập 2 Kết nối tri thức


Haylamdo biên soạn và sưu tầm lời giải bài tập Toán 12 trang 13 Tập 2 trong Bài 12: Tích phân Toán 12 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 13.

Giải Toán 12 trang 13 Tập 2 Kết nối tri thức

HĐ1 trang 13 Toán 12 Tập 2: Kí hiệu T là hình thang vuông giới hạn bởi đường thẳng y = x + 1, trục hoành và hai đường thẳng x = 1, x = t (1 ≤ t ≤ 4) (H.4.4)

a) Tính diện tích S của T khi t = 4.

b) Tính diện tích S(t) của T khi t ∈ [1; 4].

c) Chứng minh rằng S(t) là một nguyên hàm của hàm số f(t) = t + 1, t ∈ [1; 4] và diện tích S = S(4) – S(1).

HĐ1 trang 13 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

a)

HĐ1 trang 13 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Kí hiệu A(1; 0), B(4; 0) và C, D lần lượt là giao điểm của đường thẳng x = 4; x = 1 với đường thẳng y = x + 1.

Khi đó C(4; 5), D(1; 2).

Ta có: AD = 2; BC = 5; AB = 3.

Khi đó diện tích hình thang T là S=AD+BC.AB2=2+5.32=212.

b)

HĐ1 trang 13 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Gọi A(1; 0), B(t; 0), t ∈ [1; 4] và C, D lần lượt là giao điểm của đường thẳng x = t; x = 1 với đường thẳng y = x + 1.

Khi đó C(t; t + 1); D(1; 2).

Do đó AB = t – 1; AD = 2; BC = t + 1.

Khi đó diện tích hình thang ABCD là

St=AD+BC.AB2=t+3.t12=t2+2t32.

c) Có St=t2+2t32S't=t2+2t32'=2t+12=t+1=ft

Do đó S(t) là một nguyên hàm của hàm số f(t) = t + 1, t ∈ [1; 4].

Có S4=42+2.432=212;S1=12+2.132=0

Do đó S(4) – S(1) = S.

HĐ2 trang 13 Toán 12 Tập 2: Xét hình thang cong giới hạn bởi đồ thị y = x2, trục hoành và hai đường thẳng x = 1, x = 2. Ta muốn tính diện tích S của hình thang cong này.

a) Với mỗi x ∈ [1; 2], gọi S(x) là diện tích phần hình thang cong đã cho nằm giữa hai đường thẳng vuông góc với trục Ox tại điểm có hoành độ bằng 1 và x (H.4.5).

Cho h > 0 sao cho x + h < 2. So sánh hiệu S(x + h) – S(x) với diện tích hai hình chữ nhật MNPQ và MNEF (H.4.6). Từ đó suy ra 0Sx+hSxhx22xh+h2

b) Cho h < 0 sao cho x + h > 1. Tương tự phần a, đánh giá hiệu S(x) – S(x + h) và từ đó suy ra 2xh+h2Sx+hSxhx20

c) Từ kết quả phần a và phần b, suy ra với mọi h ≠ 0, ta có Sx+hSxhx22xh+h2.

Từ đó chứng minh S'(x) = x2, x ∈ (1; 2).

Người ta chứng minh được S'(1) = 1, S'(2) = 4, tức là S(x) là một nguyên hàm của x2 trên [1; 2].

d) Từ kết quả của phần c, ta có Sx=x33+C. Sử dụng điều này với lưu ý S(1) = 0 và diện tích cần tính S = S(2), hãy tính S.

Gọi F(x) là một nguyên hàm tùy ý của f(x) = x2 trên [1; 2]. Hãy so sánh S và F(2) – F(1).

HĐ2 trang 13 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

a) Với h > 0, x + h < 2, kí hiệu SMNPQ và SMNEF lần lượt là diện tích các hình chữ nhật MNPQ và MNEF, ta có: SMNPQ ≤ S(x + h) – S(x) ≤ SMNEF

hay hx2 ≤ S(x + h) – S(x) ≤ h(x + h)2.

Suy ra 0Sx+hSxhx22xh+h2

b) Với h < 0 và x + h > 1, kí hiệu SMNPQ và SMNEF lần lượt là diện tích các hình chữ nhật MNPQ và MNEF, ta có SMNPQ ≤ S(x + h) – S(x) ≤ SMNEF

hay h(x+h)2 ≤ S(x + h) – S(x) ≤ hx2.

Suy ra 2xh+h2Sx+hSxhx20

c) Dựa vào kết quả của câu a, b ta suy ra với mọi h ≠ 0, ta có:

Sx+hSxhx22xh+h2

Suy ra S'x=limh0Sx+hSxh=x2,x1;2

d) Vì S(1) = 0 nên S1=133+C=0C=13

Vậy Sx=x3313

Ta có S=S2=23313=73

Giả sử Fx=x33 là một nguyên hàm của f(x) = x2 trên [1; 2].

Khi đó F1=13;F2=83. Ta thấy F2F1=73=S.

Lời giải bài tập Toán 12 Bài 12: Tích phân hay khác:

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác: