Giải Toán 12 trang 53 Tập 2 Kết nối tri thức


Haylamdo biên soạn và sưu tầm lời giải bài tập Toán 12 trang 53 Tập 2 trong Bài 16: Công thức tính góc trong không gian Toán 12 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 53.

Giải Toán 12 trang 53 Tập 2 Kết nối tri thức

Vận dụng trang 53 Toán 12 Tập 2: Hãy trả lời câu hỏi đã được nêu ra trong tình huống mở đầu.

Vận dụng trang 53 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

Chọn hệ trục tọa độ như hình vẽ, O là trung điểm của AC.

Ta có: A(0; −2; 0), B(23; 0; 0), C(0; 2; 0), A'(0; −2; 7), B'(23; 0; 6), C'(0; 2; 5).

Ta có AB=23;2;0,AC=0;4;0,A'B'=23;2;1,A'C'=0;4;2

Có AB,AC=2040,02300,23204=0;0;83

A'B',A'C'=2142,12320,23204=0;43;83

Mặt phẳng (ABC) có một vectơ pháp tuyến là 183AB,AC=0;0;1

Mặt phẳng (A'B'C') có một vectơ pháp tuyến là 143A'B',A'C'=0;1;2

Do đó cosABC,A'B'C'=21.1+4=25 => ((ABC), (A'B'C')) ≈ 26,6°.

Suy ra mái nhà nghiêng với mặt sàn nhà một góc khoảng 26,6°.

Bài 5.20 trang 53 Toán 12 Tập 2: Trong không gian Oxyz, tính góc giữa hai đường thẳng Δ1:x=1+2ty=1tz=2+3t và Δ2:x21=x+11=z22

Lời giải:

Đường thẳng ∆1 có vectơ chỉ phương là u1=2;1;3

Đường thẳng ∆2 có vectơ chỉ phương là u2=1;1;2

cosΔ1,Δ2=2.1+1.1+3.222+12+32.12+12+22=314.6=2114

Suy ra (∆1, ∆2) ≈ 70,9°.

Bài 5.21 trang 53 Toán 12 Tập 2: Trong không gian Oxyz, tính góc giữa trục Oz và mặt phẳng (P): x + 2y – z – 1 = 0.

Lời giải:

Trục Oz có vectơ chỉ phương là k=0;0;1

Mặt phẳng (P) có vectơ pháp tuyến là n=1;2;1

Có sinOz,(P)=0.1+0.2+1.11.1+22+12=16

Suy ra (Oz, (P)) ≈ 24,1°.

Bài 5.22 trang 53 Toán 12 Tập 2: Tính góc giữa đường thẳng Δ:x+11=y32=z+23 và mặt phẳng (P): x + y + z + 3 = 0.

Lời giải:

Đường thẳng ∆ có vectơ chỉ phương là u=1;2;3

Mặt phẳng (P) có vectơ pháp tuyến là n=1;1;1

Có sinΔ,P=1.1+2.1+3.112+22+3212+12+12=442

Suy ra (∆, (P)) ≈ 38,1°.

Bài 5.23 trang 53 Toán 12 Tập 2: Kim tự tháp Kheops ở Ai Cập có dạng hình chóp S.ABCD, có đáy là hình vuông với cạnh dài 230 m, các cạnh bên bằng nhau và dài 219 m (theo britannica.com) (H.5.38). Tính góc giữa hai mặt phẳng (SAB) và (SBC).

Bài 5.23 trang 53 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

Bài 5.23 trang 53 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Gọi O là giao điểm của AC và BD. Suy ra O là trung điểm của AC, BD.

Vì các tam giác SAC, SBD đều cân tại S, SO là trung tuyến nên SO đồng thời là đường cao.

Suy ra SO ⊥ AC, SO ⊥ BD nên SO ⊥ (ABCD).

Chọn hệ tọa độ như hình vẽ.

Vì ABCD là hình vuông cạnh 230 m nên OA = OB = OC = OD = 1152.

Xét tam giác SOB vuông tại O, có SO=SB2OB2=219211522=7439

Ta có A1152;0;0,B0;1152;0,C1152;0;0,S0;0;7439

Ta có SA=1152;0;7439,SB=0;1152;7439,

SC=1152;0;7439

Ta có SA,SB=0743911527439,7439115274390,1152001152

=805878;805878;26450

SB,SC=1152743907439,7439074391152,0115211520

=805878;805878;26450

Mặt phẳng (SAB) nhận n=15SA,SB=161878;161878;5290 làm vectơ pháp tuyến.

Mặt phẳng (SBC) nhận n'=15SB,SC=161878;161878;5290 làm vectơ pháp tuyến.

Do đó

cosSAB,SBC=1618782+1618782+529021618782+1618782+52902.1618782+1618782+52902

=529021618782+1618782+529020,3807

Suy ra ((SAB), (SBC)) ≈ 67,6°.

Vậy góc giữa hai mặt phẳng (SAB) và (SBC) khoảng 67,6°.

Bài 5.24 trang 53 Toán 12 Tập 2: (H.5.39) Trong một bể hình lập phương cạnh 1 m có chứa một ít nước. Người ta đặt đáy bể nghiêng so với mặt phẳng nằm ngang. Biết rằng, lúc đó mặt nước có dạng hình bình hành ABCD và khoảng cách từ các điểm A, B, C đến đáy bể tương ứng là 40 cm, 44 cm, 48 cm.

a) Khoảng cách từ điểm D đến đáy bể bằng bao nhiêu centimét? (Tính gần đúng, lấy giá trị nguyên).

b) Đáy bể nghiêng so với mặt phẳng nằm ngang một góc bao nhiêu độ?

Bài 5.24 trang 53 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

Bài 5.24 trang 53 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

a) Chọn hệ trục tọa độ như hình vẽ.

40 cm = 0,4 m, 44 cm = 0,44 m, 48 cm = 0,48 m.

Khi đó ta có A(0; 1; 0,4), B(1; 1; 0,44), C(1; 0; 0,48).

Có AB=1;0;0,04

Vì ABCD là hình bình hành nên AB=DC1xD=1yD=00,48zD=0,04xD=0yD=0zD=0,44

Suy ra D(0; 0; 0,44).

Vậy khoảng cách từ điểm D đến đáy bể là 44 cm.

b) Ta có đáy bể nằm trong mặt phẳng Oxy: z = 0 có vectơ pháp tuyến k=0;0;1

Ta có AB=1;0;0,04AC=1;1;0,08AB,AC=0,04;0,04;1

Mặt phẳng (ABCD) đi qua A(0; 1; 0,4) và có vectơ pháp tuyến n=AB,AC=0,04;0,04;1 có phương trình là:

0,04x – 0,04(y – 1) – (z – 0,4) = 0 ⇔ 0,04x – 0,04y – z + 0,44 = 0.

Do đó góc giữa đáy bể và mặt phẳng nằm ngang chính là góc giữa mặt phẳng (ABCD) và mặt đáy.

Có cosABCD,Oxy=11.0,042+0,042+12=25627

Suy ra ((ABCD), (Oxy)) ≈ 3,2°.

Lời giải bài tập Toán 12 Bài 16: Công thức tính góc trong không gian hay khác:

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác: