Bài 4 trang 107 Toán 7 Tập 2 Cánh diều
Cho tam giác ABC có hai đường trung tuyến AM và BN cắt nhau tại G. Gọi H là hình chiếu của A lên đường thẳng BC. Giả sử H là trung điểm của đoạn thẳng BM. Chứng minh:
Giải Toán 7 Bài 10: Tính chất ba đường trung tuyến của tam giác - Cánh diều
Bài 4 trang 107 Toán lớp 7 Tập 2: Cho tam giác ABC có hai đường trung tuyến AM và BN cắt nhau tại G. Gọi H là hình chiếu của A lên đường thẳng BC. Giả sử H là trung điểm của đoạn thẳng BM. Chứng minh:
a) ∆AHB = ∆AHM;
b) .
Lời giải:
a) Do H là hình chiếu của A trên BC nên AH ⊥ BC.
Xét ∆AHB vuông tại H và ∆AHM vuông tại H có:
AH chung.
HB = HM (theo giả thiết).
Do đó ∆AHB = ∆AHM (2 cạnh góc vuông).
b) Do ∆AHB = ∆AHM (2 cạnh góc vuông) nên AB = AM (2 cạnh tương ứng).
∆ABC có hai đường trung tuyến AM, BN cắt nhau tại G nên G là trọng tâm của ∆ABC.
Suy ra AG = AM.
Mà AB = AM nên AG = AB.
Lời giải bài tập Toán 7 Bài 10: Tính chất ba đường trung tuyến của tam giác hay, chi tiết khác: