Bài 2 trang 108 Toán 8 Tập 1 Cánh diều


Cho tam giác ABC có hai đường trung tuyến BM và CN cắt nhau tại G. Gọi P và Q lần lượt là trung điểm của GB và GC. Chứng minh tứ giác PQMN là hình bình hành.

Giải Toán 8 Bài 4: Hình bình hành - Cánh diều

Bài 2 trang 108 Toán 8 Tập 1: Cho tam giác ABC có hai đường trung tuyến BM và CN cắt nhau tại G. Gọi P và Q lần lượt là trung điểm của GB và GC. Chứng minh tứ giác PQMN là hình bình hành.

Lời giải:

Bài 2 trang 108 Toán 8 Tập 1 Cánh diều | Giải Toán 8

• Xét ΔABC có hai đường trung tuyến BM và CN cắt nhau tại G (giả thiết) nên G là trọng tâm của ΔABC.

Suy ra GM=GB2; GN=GC2 (tính chất trọng tâm của tam giác)    (1)

Mà P là trung điểm của GB (giả thiết) nên GP=PB=GB2 (2)

Q là trung điểm của GC (giả thiết) nên GQ=QC=GC2 (3)

Từ (1), (2) và (3) suy ra GM = GP và GN = GQ.

• Xét tứ giác PQMN có: GM = GP và GN = GQ (chứng minh trên)

Do đó tứ giác PQMN có hai đường chéo MP và NQ cắt nhau tại trung điểm G của mỗi đường nên là hình bình hành.

Lời giải bài tập Toán 8 Bài 4: Hình bình hành hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 8 Cánh diều hay, chi tiết khác: