Hoạt động 3 trang 106, 107 Toán 8 Tập 1 Cánh diều


a) Cho tứ giác ABCD có AB = CD, BC = DA (Hình 39).

Giải Toán 8 Bài 4: Hình bình hành - Cánh diều

Hoạt động 3 trang 106, 107 Toán 8 Tập 1: a) Cho tứ giác ABCD có AB = CD, BC = DA (Hình 39).

• Hai tam giác ABC và CDA có bằng nhau hay không? Từ đó, hãy so sánh các cặp góc: BAC^ DCA^; ACB^ CAD^.

• ABCD có phải là hình bình hành hay không?

Hoạt động 3 trang 106, 107 Toán 8 Tập 1 Cánh diều | Giải Toán 8

b) Cho tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại trung điểm O của mỗi đường (Hình 40).

• Hai tam giác ABO và CDO có bằng nhau hay không? Từ đó, hãy so sánh các cặp góc: BAC^ DCA^; ACB^ CAD^.

• ABCD có phải là hình bình hành hay không?

Hoạt động 3 trang 106, 107 Toán 8 Tập 1 Cánh diều | Giải Toán 8

Lời giải:

a) • Xét ΔABC và ΔCDA có:

AB = CD (giả thiết); BC = DA (giả thiết); AC là cạnh chung

Do đó ΔABC = ΔCDA (c.c.c)

Suy ra BAC^=DCA^ ACB^=CAD^ (các cặp góc tương ứng).

• Ta có BAC^=DCA^ BAC^,DCA^ ở vị trí so le trong nên AB // CD.

          ACB^=CAD^ ACB^,CAD^ ở vị trí so le trong nên AD // BC.

Tứ giác ABCD có AB // CD và AD // BC nên là hình bình hành.

b) • Xét ΔABO và ΔCDO có:

OA = OC (giả thiết); AOB^=COD^ (đối đỉnh); OB = OD (giả thiết)

Do đó ΔABO = ΔCDO (c.g.c)

Suy ra BAO^=DCO^ (cặp góc tương ứng)

Hay BAC^=DCA^.

Chứng minh tương tự ta cũng có: ΔCBO = ΔADO (c.g.c)

Suy ra OCB^=OAD^ (cặp góc tương ứng)

Hay ACB^=CAD^.

• Ta có BAC^=DCA^ BAC^,DCA^ ở vị trí so le trong nên AB // CD.

          ACB^=CAD^ ACB^,CAD^ ở vị trí so le trong nên AD // BC.

Tứ giác ABCD có AB // CD và AD // BC nên là hình bình hành.

Lời giải bài tập Toán 8 Bài 4: Hình bình hành hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 8 Cánh diều hay, chi tiết khác: