X

Toán 8 Kết nối tri thức

Cho hình bình hành ABCD. Các tia phân giác của góc A, B, C, D cắt nhau như trên Hình


Câu hỏi:

Cho hình bình hành ABCD. Các tia phân giác của góc A, B, C, D cắt nhau như trên Hình 3.58. Chứng minh rằng EFGH là hình chữ nhật.

Cho hình bình hành ABCD. Các tia phân giác của góc A, B, C, D cắt nhau như trên Hình (ảnh 1)

Trả lời:

Cho hình bình hành ABCD. Các tia phân giác của góc A, B, C, D cắt nhau như trên Hình (ảnh 2)

Vì tứ giác ABCD là hình bình hành nên AB // CD hay AM // DN.

Suy ra M^1=D^2 (hai góc so le trong)

D^1=D^2 (vì DM là tia phân giác ADC^).

Do đó M^1=D^1 nên tam giác ADM cân tại A.

Chứng minh tương tự, ta có tam giác BCN cân tại C.

B^1=B^2;  D^1=D^2 (vì DM, BN lần lượt là tia phân giác của ADC^;  ABC^).

ADC^=ABC^ (vì tứ giác ABCD là hình bình hành).

Do đó B^1=B^2=D^1=D^2.

Tam giác ADM cân tại A, tam giác BCN cân tại C.

B^1=D^2 nên M^1=N^2 suy ra M^1=N^2.

Tứ giác BMDN có B^1=D^2 ;M^2=N^1 nên tứ giác BMDN là hình bình hành.

Suy ra DM // BN hay HE // GF.

Tam giác ADM cân tại A có AH là đường phân giác nên AH cũng là đường cao.

Suy ra AHE^=90° nên EHG^=90°.

Mà HE // GF suy ra AGF^=90° (hai góc đồng vị).

Tương tự, ta cũng chứng minh được: HEF^=90°;  GFE^=90°.

Tứ giác EFGH có EHG^=90°; AGF^=90°; HEF^=90°;  GFE^=90°.

Do đó tứ giác EFGH là hình chữ nhật.

Xem thêm lời giải bài tập Toán 8 Kết nối tri thức hay, chi tiết:

Câu 1:

Cho tam giác ABC; M và N lần lượt là trung điểm của hai cạnh AB và AC. Lấy điểm P sao cho N là trung điểm của đoạn thẳng MP.

a) Hỏi tứ giác AMCP là hình gì? Vì sao?

Xem lời giải »


Câu 2:

b) Với điều kiện nào của tam giác ABC thì tứ giác AMCP là hình chữ nhật; hình thoi; hình vuông?

Xem lời giải »


Câu 3:

Một khung tre hình chữ nhật có lắp đinh vít tại bốn đỉnh. Khi khung tre này bị xô lệch (do các đinh vít bị lỏng), các góc không còn vuông nữa thì khung đó là hình gì? Tại sao? Hỏi khi nẹp thêm một đường chéo vào khung đó thì nó còn bị xô lệch không?

Xem lời giải »


Câu 4:

Gọi Ou và Ov lần lượt là hai tia phân giác của hai góc kề bù xOy và x’Oy; A là một điểm khác O trên tia Ox. Gọi B và C là chân đường vuông góc hạ từ A lần lượt xuống đường thẳng chứa Ou và Ov. Hỏi tứ giác OBAC là hình gì? Vì sao?

Xem lời giải »


Câu 5:

Cho hình vuông ABCD. Lấy một điểm E trên cạnh CD. Tia phân giác của góc DAE cắt cạnh DC tại M. Đường thẳng qua M vuông góc với AE cắt BC tại N.

Chứng minh DM + BN = MN.

Xem lời giải »