Tìm các độ dài x, y trong Hình 4.6.
Câu hỏi:
Tìm các độ dài x, y trong Hình 4.6.
Trả lời:
a) Áp dụng định lí Thalès vào ∆ABC, ta có:
hay .
Suy ra (đvđd).
Vậy x = 3,25 (đvđd).
b) Ta có: PQ = PF + QF = 5 + 3,5 = 8,5 (đvđd).
Áp dụng định lí Thalès vào ∆PHQ, ta có:
hay .
Suy ra (đvđd).
Vậy y = 6,8 (đvđd).
Xem thêm lời giải bài tập Toán 8 Kết nối tri thức hay, chi tiết:
Câu 1:
Cây cầu AB bắc qua một con sông có chiều rộng 300 m. Để đo khoảng cách giữa hai điểm C và D trên hai bờ con sông, người ta chọn một điểm E trên đường thẳng AB sao cho ba điểm E, C, D thẳng hàng. Trên mặt đất, người ta đo được AE = 400 m, EC = 500 m. Theo em, người ta tính khoảng cách giữa C và D như thế nào?
Xem lời giải »
Câu 2:
Cho Hình 4.2, em hãy thực hiện các hoạt động sau:
Hãy tìm độ dài của hai đoạn thẳng AB và CD nếu chọn đoạn MN làm đơn vị độ dài. Với các độ dài đó hãy tính tỉ số
Xem lời giải »
Câu 3:
Cho Hình 4.2, em hãy thực hiện các hoạt động sau:
Dùng thước thẳng, đo độ dài hai đoạn thẳng AB và CD (đơn vị: cm) rồi dùng kết quả vừa đo để tính tỉ số .
Xem lời giải »
Câu 4:
So sánh hai tỉ số tìm được trong hai hoạt động trên.
Xem lời giải »
Câu 5:
Cho ∆ABC có AB = 6 cm, AC = 9 cm. Trên cạnh AB lấy điểm B’, trên cạnh AC lấy điểm C’ sao cho AB’ = 4 cm, AC’ = 6 cm (H.4.7).
• So sánh các tỉ số và .
• Vẽ đường thẳng a đi qua B’ và song song với BC, đường thẳng qua a cắt AC tại điểm C’’. Tính độ dài đoạn thẳng AC’’.
• Nhận xét gì về hai điểm C’, C’’ và hai đường thẳng B’C’, BC?
Xem lời giải »
Câu 6:
Cây cầu AB bắc qua một con sông có chiều rộng 300 m. Để đo khoảng cách giữa hai điểm C và D trên hai bờ con sông, người ta chọn một điểm E trên đường thẳng AB sao cho ba điểm E, C, D thẳng hàng. Trên mặt đất, người ta đo được AE = 400 m, EC = 500 m. Theo em, người ta tính khoảng cách giữa C và D như thế nào?
Xem lời giải »
Câu 7:
Tìm độ dài x, y trong Hình 4.9 (làm tròn kết quả đến chữ số thập phân thứ nhất).
Xem lời giải »
Câu 8:
Tìm các cặp đường thẳng song song trong Hình 4.10 và giải thích tại sao chúng song song với nhau.
Xem lời giải »