Giải Toán 8 trang 80 Tập 1 Kết nối tri thức
Với Giải Toán 8 trang 80 Tập 1 trong Bài 15: Định lí Thalès trong tam giác Toán lớp 8 Tập 1 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 8 trang 80.
Giải Toán 8 trang 80 Tập 1 Kết nối tri thức
Vận dụng trang 80 Toán 8 Tập 1: Em hãy trả lời câu hỏi trong tình huống mở đầu.
Cây cầu AB bắc qua một con sông có chiều rộng 300 m. Để đo khoảng cách giữa hai điểm C và D trên hai bờ con sông, người ta chọn một điểm E trên đường thẳng AB sao cho ba điểm E, C, D thẳng hàng. Trên mặt đất, người ta đo được AE = 400 m, EC = 500 m. Theo em, người ta tính khoảng cách giữa C và D như thế nào?
Lời giải:
Hai cạnh AC và BD thuộc hai bờ của con sông nên AC // BD, áp dụng định lí Thalès, ta có:
hay .
Suy ra (m).
Vậy khoảng cách giữa C và D bằng 375 m.
Bài 4.1 trang 80 Toán 8 Tập 1: Tìm độ dài x, y trong Hình 4.9 (làm tròn kết quả đến chữ số thập phân thứ nhất).
Lời giải:
• Hình 4.9a)
Vì HK // QE nên áp dụng định lí Thalès, ta có:
hay .
Suy ra (đvđd).
• Hình 4.9b)
Vì mà và là hai góc đồng vị nên MN // BC.
Ta có AB = AM + BM = y + 6,5.
Áp dụng định lí Thalès, ta có: hay .
Suy ra 11y = 8(y + 6,5)
11y = 8y + 52
11y – 8y = 52
3y = 52
(đvđd)
Vậy x ≈ 5,3 (đvđd); y ≈ 17,3 (đvđd).
Bài 4.2 trang 80 Toán 8 Tập 1: Tìm các cặp đường thẳng song song trong Hình 4.10 và giải thích tại sao chúng song song với nhau.
Lời giải:
• Hình 4.10a)
Ta có nên .
Vì , E ∈ MN, F ∈ MP nên theo định lí Thalès đảo ta suy ra EF // NP.
• Hình 4.10b)
* Ta có: .
Vì nên MF không song song với KQ.
* Ta có: .
Vì ; E ∈ KQ; M ∈ HQ HQ nên theo định lí Thalès đảo ta suy ra ME // HK.
Bài 4.3 trang 80 Toán 8 Tập 1: Cho ∆ABC, từ điểm D trên cạnh BC, kẻ đường thẳng song song với AB cắt AC tại F và kẻ đường thẳng song song với AC cắt AB tại E.
Chứng minh rằng: .
Lời giải:
Áp dụng định lí Thalès, ta có:
• Vì DE // AC nên ;
• Vì DF // AC nên .
Khi đó, = = = 1
Bài 4.4 trang 80 Toán 8 Tập 1: Cho ∆ABC có trọng tâm G. Vẽ đường thẳng d qua G và song song với AB, d cắt BC tại điểm M. Chứng minh rằng
Lời giải:
Lấy D là trung điểm của cạnh BC.
Khi đó, AD là đường trung tuyến của tam giác ABC.
Vì G là trọng tâm của tam giác ABC nên điểm G nằm trên cạnh AD.
Ta có hay .
Vì MG // AB, theo định lí Thalès, ta suy ra: .
Ta có BD = CD (vì D là trung điểm của cạnh BC) nên .
Do đó (đpcm).
Bài 4.5 trang 80 Toán 8 Tập 1: Để đo khoảng cách giữa hai vị trí B và E ở hai bên bờ sông, bác An chọn ba vị trí A, F, C cùng nằm ở một bên bờ sông sao cho ba điểm C, E, B thẳng hàng, ba điểm C, F, A thẳng hàng và AB // EF (H.4.11). Sau đó bác An đo được AF = 40 m, FC = 20 m, EC = 30 m. Hỏi khoảng cách giữa hai vị trí B và E bằng bao nhiêu?
Lời giải:
Theo đề bài, ba điểm C, E, B thẳng hàng, ba điểm C, F, A thẳng hàng và AB // EF, áp dụng định lí Thalès, ta có:
hay .
Suy ra (m).
Vậy khoảng cách giữa hai vị trí B và E bằng 60 m.
Lời giải bài tập Toán 8 Bài 15: Định lí Thalès trong tam giác hay khác: