X

Toán 8 Kết nối tri thức

Vẽ hình bình hành, biết hai cạnh liên tiếp bằng 3 cm, 4 cm và góc xen giữa hai cạnh đó bằng


Câu hỏi:

Vẽ hình bình hành, biết hai cạnh liên tiếp bằng 3 cm, 4 cm và góc xen giữa hai cạnh đó bằng 60o. Hãy mô tả cách vẽ và giải thích tại sao hình vẽ được là hình bình hành.

Trả lời:

Giả sử hình bình hành ABCD có AD = 3cm, AB = 4 cm và BAD^=60°.

Cách vẽ:

- Vẽ cạnh AB = 4 cm.

- Vẽ BAx^=60°. Trên tia Ax lấy điểm D sao cho AD = 3cm.

- Kẻ By // AD, Dz // BC. Hai tia By và Dz cắt nhau tại C, ta được hình bình hành ABCD.

Hình vẽ được là hình bình hành vì có hai cặp cạnh đối song song (AB // CD, AD // BC).

Vẽ hình bình hành, biết hai cạnh liên tiếp bằng 3 cm, 4 cm và góc xen giữa hai cạnh đó bằng (ảnh 1)

Xem thêm lời giải bài tập Toán 8 Kết nối tri thức hay, chi tiết:

Câu 1:

Hai con đường lớn a và b cắt nhau tạo thành một góc. Bên trong góc đó có một điểm dân cư O. Phải mở một con đường thẳng đi qua O như thế nào để theo con đường đó, hai đoạn đường từ điểm O đến con đường a và b bằng nhau (các con đường đều là đường thẳng) (H.3.27)?

Hai con đường lớn a và b cắt nhau tạo thành một góc. Bên trong góc đó có một điểm (ảnh 1)

Xem lời giải »


Câu 2:

Trong Hình 3.28, có một hình bình hành. Đó là hình nào? Em có thể giải thích tại sao không?

Trong Hình 3.28, có một hình bình hành. Đó là hình nào? Em có thể giải thích tại sao không? (ảnh 1)

Xem lời giải »


Câu 3:

Hãy nêu các tính chất của hình bình hành mà em đã biết.

Xem lời giải »


Câu 4:

Cho hình bình hành ABCD (H.3.30).

Cho hình bình hành ABCD (H.3.30).   a) Chứng minh tam giác ABC = tam giác CDA.  (ảnh 1)

a) Chứng minh ∆ABC = ∆CDA.

Từ đó suy ra AB = CD, AD = BC và ABC^=CDA^.

Xem lời giải »


Câu 5:

b) Chứng minh ∆ABD = ∆CDB. Từ đó suy ra DAB^=BCD^.

Xem lời giải »


Câu 6:

c) Gọi giao điểm của hai đường chéo AC, BD là O. Chứng minh ∆AOB = ∆COD. Từ đó suy ra OA = OC, OB = OD.

Xem lời giải »